Interceram - International Ceramic Review

, Volume 63, Issue 7–8, pp 372–375 | Cite as

Al-O-Si Bond Formation in Boehmite-Fumed Silica Mixtures during Mechanochemical Activation

  • Liugang ChenEmail author
  • Guotian Ye
  • Kunpeng Li
  • Qingfeng Wang
  • Dayan Xu
  • Muxing Guo


Al-O-Si bond formation in boehmite-fumed silica mixtures during mechanochemical activation was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), magic angle spinning nuclear magnetic resonance (MAS-NMR) and X-ray photoelectron spectroscopy (XPS). The intrinsic structure deformation of the boehmite was examined with XRD. Formation of new Al-O-Si bonds was illustrated by the incorporation of Al3+ in Si-O-Si linkages, the change in the Al coordination number of boehmite, and the appearance of new resonance in the 29Si NMR spectrum of the ground mixture. The presence of Al-O units in silica frameworks was verified by the increase of Al 2p binding energy and the decrease of Si 2p binding energy.


mechanochemical activation chemical bond boehmite fumed silica mullite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kong, L.B., Zhang, T.S., Chen, Y.Z., Ma, J., Boey, F., Huang, H.: Microstructural composite mullite derived from oxides via a high-energy ball milling process. Ceram. Internat. 30 (2004) 1313–1317CrossRefGoogle Scholar
  2. [2]
    Yalamaç, E., Akkurt, S.: Additive and intensive grinding effects on the synthesis of cordierite. Ceram. Internat. 32 (2006) 825–832CrossRefGoogle Scholar
  3. [3]
    Kharaziha, M., Fathi, M.: Synthesis and characterization of bioactive forsterite nanopowder. Ceram. Internat. 35 (2009) 2449–2454CrossRefGoogle Scholar
  4. [4]
    Chen, L., Ye, G., Xu, D., Zhu, L., Lu, Z., Dong, L., Liu, Y.: Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Mater. Lett. 85 (2012) 91–94CrossRefGoogle Scholar
  5. [5]
    Temuujin, J., Okada, K., MacKenzie, K.J.D.: Characterization of aluminosilicate (mullite) precursors prepared by a mechanochemical process, J. Mater. Res. 13 (1998) 2184–2189CrossRefGoogle Scholar
  6. [6]
    Temuujin, J., Okada, K., MacKenzie, K.J.D.: Formation of mullite from mechanochemically activated oxides and hydroxides. J. Europ. Ceram. Soc. 18 (1998) 831–835CrossRefGoogle Scholar
  7. [7]
    Temuujin, J., Okada, K., MacKenzie, K.JD.: Effect of mechanochemical treatment on the crystallization behaviour of diphasic mullite gel. Ceram. Internat. 25 (1999) 85–90CrossRefGoogle Scholar
  8. [8]
    Ye, G., Troczynski, T.: Mechanochemical Activation-Assisted Low-Temperature Synthesis of CaZrO3. J. Amer. Ceram. Soc. 90 (2007) 287–290CrossRefGoogle Scholar
  9. [9]
    Xu, D., Ye, G., Zhu, L., Liu, L., Huang, Y.: Synthesis of Mullite from Different Precursors with Mechanical Activation. UNITECR 2011, Kyoto, Japan, (2011) 598–601Google Scholar
  10. [10]
    Tsuchida, T., Ichikawa, N.: Mechanochemical phenomena of gibbsite, bayerite and boehmite by grinding. React. Solids. 7 (1989) 207–217CrossRefGoogle Scholar
  11. [11]
    Tsuchida, T., Sugimoto, K.: Effect of grinding of mixtures of goethite and hydrated alumina on the formation of Fe2O3-Al2O3 solid solutions. Thermochim. Acta. 170 (1990) 41–50CrossRefGoogle Scholar
  12. [12]
    Krishna Priya, G., Padmaja, P., Warrier, K.G.K., Damodaran, A.D., Aruldhas, G.: Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy, J. Mater. Sci. Lett. 16 (1997) 1584–1587CrossRefGoogle Scholar
  13. [13]
    Kloprogge, J.T., Ruan, H.D., Frost, R.L.: Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J. Mater. Sci. 37 (2002) 1121–1129CrossRefGoogle Scholar
  14. [14]
    Temuujin, J., Okada, K., MacKenzie, K.J.D.: Role of water in the mechanochemical reactions of MgO-SiO2 systems, J. Solid State Chem. 138 (1998) 169–177CrossRefGoogle Scholar
  15. [15]
    Liao, J., Senna, M.: Mechanochemical dehydration and amorphization of hydroxides of Ca, Mg and Al on grinding with and without SiO2. Solid State Ionics 66 (1993) 313–319CrossRefGoogle Scholar
  16. [16]
    Kovalchuk, G., Fernández-Jiménez, A., Palomo, A.: Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development — Part II. Fuel. 86 (2007) 315–322CrossRefGoogle Scholar
  17. [17]
    MacKenzie, K.J.D., Temuujin, J., Smith, M.E., Angerer, P., Kameshima, Y.: Effect of mechanochemical activation on the thermal reactions of boehmite (γ-AlOOH) and γ-Al2O3. Thermochim. Acta. 359 (2000) 87–94CrossRefGoogle Scholar
  18. [18]
    Kloprogge, J.T., Duong, L.V., Wood, B.J., Frost, R.L.: XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite. J. Colloid Interface Sci. 296 (2006) [2] 572–576CrossRefGoogle Scholar
  19. [19]
    Pauling, L.: The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, New York (1960) 90Google Scholar
  20. [20]
    Anderson, P.R., Swartz, W.E.: X-ray photoelectron spectroscopy of some aluminosilicates. Inorg. Chem. 13 (1974) 2293–2294CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Liugang Chen
    • 1
    • 2
    Email author
  • Guotian Ye
    • 1
  • Kunpeng Li
    • 1
  • Qingfeng Wang
    • 1
  • Dayan Xu
    • 1
  • Muxing Guo
    • 2
  1. 1.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of Metallurgy and Materials Engineering (MTM)KU LeuvenLeuvenBelgium

Personalised recommendations