Interceram - International Ceramic Review

, Volume 63, Issue 7–8, pp 368–371 | Cite as

Study of Spinel-Containing High Alumina Castable with Different Cements

  • R. SarkarEmail author
  • A. Sharma


High alumina castable with presynthesized and in situ spinel formation is studied using two different lime-containing high alumina cements. Vibratable castable compositions were studied by conventional processing, using a distribution coefficient of 0.29 and heat treatments at 110, 900, and 1500°C. Slightly lower density and strength values were found for in situ spinel-forming compositions and spinel formation was observed to start around 900°C and near completion at 1500°C in the matrix of the castables.


refractories castable steelmaking high alumina cements magnesium aluminate spinel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Maschio, R.D., Fabbri, B., Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel. Indust. Ceram. 8 (1988) [2] 121–126Google Scholar
  2. [2]
    Sarkar, R.: Refractory applications of magnesium aluminate spinel. Interceram — Refractories Manual (2010) 11–14Google Scholar
  3. [3]
    Racher, P.R., McConnell, R.W., Buhr, A.: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles. Proc. 43rd Conf. of Metallurgy, Hamilton, Canada (2004)Google Scholar
  4. [4]
    Naigai, B., Matsumoto, O., Isobe, T., Nishiumi, Y.: Wear mechanism of castable for steel ladle by slag. Taik. Overs. 12 (1992) [1] 15–20Google Scholar
  5. [5]
    Yamamura, T., Kubota, Y., Kaneshige, T., Nanba, M.: Effect of spinel clinker composition on properties of alumina-spinel castable. Taik. Overs. 13 (1994) 39–45Google Scholar
  6. [6]
    Ko, Y.C.: Properties and production of Al2O3-Spinel and Al2O3-MgO castables for steel ladles. Ceram. News 6 (2002) [1] 51–56Google Scholar
  7. [7]
    Díaz, L.A., Torrecillas, R., de Azab, A.H., Pena, P.: Effect of spinel content on slag attack resistance of high alumina refractory castables. J. Europ. Ceram. Soc. 27 (2007) 4623–4631CrossRefGoogle Scholar
  8. [8]
    Sumimura, S., Yamamura, T., Cubata, Y., Kanashige, T.: Study on slag penetration of alumina-spinel castable. Proc. UNITECR 1993, Sao Paulo (Brazil), 97–101Google Scholar
  9. [9]
    Nakashima, M., Isobe, T., Itose, S., Touno, A., Shimizu, I.: Improving the corrosion resistance of alumina-spinel castable by spinel additions. J. Techn. Assoc. Refract. Jpn., 21 (2001) [3] 155–161Google Scholar
  10. [10]
    Ko, Y.C.: Influence of the characteristics of spinels on the slag resistance of Al2O3-MgO and Al2O3-spinel castables. J. Am. Ceram. Soc., 83 (2000) [9] 2333–2335CrossRefGoogle Scholar
  11. [11]
    Shima, K., Imaiida, Y., Katani, T.: Application of alumina-spinel castable to teeming ladle for stainless steel. Taik. Overs. 15 (1995) [3] 24–28Google Scholar
  12. [12]
    Brandao, P., Goncalves, G.E., Duarte, A.K.: Mechanisms of hydration/carbonation of basic refractories. Refract. Appl. 3 (1998) [2] 6–8Google Scholar
  13. [13]
    Brandao, P., Goncalves, G.E., Duarte, A.K.: Mechanisms of hydration/carbonation of basic refractories. Part 2: Investigation of the kinetics of formation of brucite in fired basic bricks. Refract. Appl. 3 (1998) [2] 9–11Google Scholar
  14. [14]
    Kaneyasu, A., Yamamoto, S., Yoshida, A.: Magnesia raw materials with improved hydration resistance. Taik. Overs. 17 (1997) [2] 21–26Google Scholar
  15. [15]
    Kaneyasu, A., Arita, Y., Yoshida, A., Watanabe, T.: Hydration resistance of MgO aggregate with added CaO. Taik. Overs. 19 (1999) [1] 30–34Google Scholar
  16. [16]
    Kaneyasu, A., Yamamoto, S., Watanabe, T.: MgO raw material with improved hydration resistance. Taik. Overs. 16 (1996) [2] 26–30Google Scholar
  17. [17]
    Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taik. Overs. 16 (1996) [3] 3–11Google Scholar
  18. [18]
    Lee, W.E., Vieira, W., Zhang, S., Ghanbari Ahari, K., Sarpoolaky, H., Parr, C.: Castable refractory concretes. Int. Mater. Rev. 46 (2001) 145–167.CrossRefGoogle Scholar
  19. [19]
    Chen, S.K., Cheng, M.Y., Lin, S.C., Ko, Y.C.: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles. Ceram. Int. 28 (2002) 811–817CrossRefGoogle Scholar
  20. [20]
    Buhr, A.: High alumina refractory castables for steel applications. Stahl und Eisen 116 (1996) [9] 59–66Google Scholar
  21. [21]
    Kriechbaum, G.W. et al.: The influence of SiO2 and spinel on the hot properties of high alumina low cement castables. Proc. 37th Inter. Colloquium Refract. 1994, Aachen (Germany), 150–159Google Scholar
  22. [22]
    Molin, A., Molin, J., Podworny, J.: Corrosion mechanism of spinel forming and spinel containing refractory castables in lab and plant conditions. Proc. UNITECR 2005, Orlando (USA), 57–62Google Scholar
  23. [23]
    Nakagawa, Z., Enomoto, N., Yi, I.S., Asano, K.: Effect of corundum/periclase sizes on expansion behavior during synthesis of spinel. Proc. UNITECR 1995, Kyoto (Japan), 1312–1319Google Scholar
  24. [24]
    Rigaud, M., Palco, S., Wang, N.: Spinel formation in the MgO-Al2O3 system relevant to basic oxides. Proc. UNITECR 1995, Kyoto(Japan), 387–394Google Scholar
  25. [25]
    Lee, W.E., Vieira, W., Zhang, S., Ahari, K.G., Sarpoolaky, H., Parr, C.: Castable refractory concretes. Int. Mat. Rev. 46 (2001) [3] 145–167CrossRefGoogle Scholar
  26. [26]
    Braulio, M.A.L., Bittencourt, L.R.M., Poirier, J., Pandolfelli, V.C.: Microsilica effects on cement bonded alumina-magnesia refractory castables. J. Techn. Assoc. Refract. Japan 28 (2008) [3] 180–184Google Scholar
  27. [27]
    Nagai, B., Matsumoto, O., Isobe, T.: Development of high-alumina castable for steel ladles. Findings on spinel formation in alumina-magnesia castable. Taik. Overs. 10 (1990) [1] 23–28Google Scholar
  28. [28]
    Nandi, P., Grag, A., Chattoraj, B.D., Mukhopahyay, M.S.: Effect of silica and temperature on spinel-based high-alumina castables. Am. Ceram. Soc. Bul. 31 (2000) 65–69Google Scholar
  29. [29]
    Fuhrer, M., Hey, A., Lee, W.E.: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories. J. Eur. Ceram. Soc. 18 (1998) 813–820CrossRefGoogle Scholar
  30. [30]
    Nanba, M., Kaneshige, T., Hamazaki, Y., Nishio, H., Ebisawa, I.: Thermal characteristics of castables for teeming ladle. Taik. Overs. 16 (1996) [3] 17–21Google Scholar
  31. [31]
    Dinger, D.R., Funk, J.E.: Particle packing. III — Discrete versus continuous particle sizes. Interceram 41 (1992) [5] 332–34Google Scholar
  32. [32]
    Fang H.S., Cha C.H., Yong S.Y.: Development of self flow castable. Proc. UNITECR 1995, Kyoto (Japan), 264–71Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations