Advertisement

Interceram - International Ceramic Review

, Volume 63, Issue 4–5, pp 216–219 | Cite as

Microwave Dielectric Characteristics of Calcium Titanate-Lithium Lanthanum Titanate Ceramics

  • A. E. Reda
  • D. M. Ibrahim
  • E. R. Souya
  • D. A. Abdel Aziz
High-Performance Ceramics
  • 1 Downloads

Abstract

The microwave dielectric characteristics, microstructure and physical properties of (1−x)CaTiO3−x(Li0.5La0.5)TiO3 (0.08≤x≤0.9) ceramics (abbreviated 92CT-LLT through 10CT-LLT) prepared by conventional solid-state routes were investigated. Increasing the proportion of (Li0.5La0.5)TiO3 compared to CaTiO3 decreased the sintering temperature of ceramic bodies by 50°C, with achievement of optimum density at 1200°C and formation of dense microstructure due to liquid phase development. In the (1−x)CT−xLLT system, the microwave dielectric properties can be effectively controlled by varying the (Li0.5La0.5)TiO3 content to form favourable secondary phase and microstructure. The best combination of microwave dielectric characteristics was obtained in samples of 50CT-LLT ceramic (x = 0.5) sintered at 1200°C/2 h, with dielectric constant εr = 14.1, low dielectric loss = 0.000021 and quality factor Qxf = 364, 524 at 8 GHz.

Keywords

microwave dielectric properties calcium titanate lithium lanthanum titanate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wakino, K., Minai, K., Tamura, H.: Microwave characteristic of (Zn,Sn)TiO4 and BaO-PbO-Nb2O3TiO3 dielectric resonators. J. Amer. Ceram. Soc. 67 (1984) [4] 278–28CrossRefGoogle Scholar
  2. [2]
    Reaney, I.M., Iddles, D.: Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Amer. Soc. 89 (2006) [7] 2063–2072Google Scholar
  3. [3]
    Pashkin A., Kamba, S., Berta, M., Petzelt, J., Zheng, H., Bagshaw, H., Reaney, I.M.: High frequency dielectric properties of CaTiO3-based microwave ceramics. J. Phys. D: Appl. Phys. 38 (2005) 741–748CrossRefGoogle Scholar
  4. [4]
    Suvorov, D., Valant, M., Jancar, B., Skapin, D.: CaTiO3 based ceramics: microstructural development and dielectric properties. Acta Chim. Slov. 48 (2001) 87–99Google Scholar
  5. [5]
    Huang, C.L., Pan, C.L., Hsu, J.F.: Dielectric properties of (1−x) (Mg0.95Co0.05) TiO3−xCaTiO3 ceramic system at microwave frequency. Mater. Res. Bull. 37 (2002) [15] 2483–2490CrossRefGoogle Scholar
  6. [6]
    Cho, S.Y., Kim, C.H., Kim, D. W., Hong, K.S., Kim, J.H.: Dielectric Properties of Ln(Mg1/2Ti1/2)O3 (Ln = Dy, La, Nd, Pr, Sm, Y) as Substrates for High-Tc Superconductor Thin Films. J. Mater. Res. 14 (1999) [6] 2484–2487CrossRefGoogle Scholar
  7. [7]
    Abdel Aziz, D.A., Sterianou, I., Reaney, I.M.: (1−x) CaTiO3−x(Li0.5 Nd0.5)TiO3 for ultra-small dielectrically loaded antennas. J. Mater. Sci. 44 (2009) 6247–6250CrossRefGoogle Scholar
  8. [8]
    Santha, N., Jawahar, I.N., Mohanan, P., Sebastian, M.T.: Microwave dielectric properties of (1−x)CaTiO3−xSm(Mg1/2Ti1/2)O3[0.1≤x≤1] ceramics. Mater. Lett. 54 (2002) 318–322CrossRefGoogle Scholar
  9. [9]
    Shen, C. H., Huang, C. L., Shih, C.F., and Huang, C.M.: A novel temperature-compensated microwave dielectric (1−x) (Mg0.95Ni0.05)TiO3−xCa0.6La0.8/3TiO3 ceramics system. Internat. J. Appl. Ceram. Technol. 6 (2009) [5] 562–570CrossRefGoogle Scholar
  10. [10]
    Huang, C.L., Tsai, J.T., Chen, Y.B.: Dielectric properties of (1−y)Ca1−xLa2x/3TiO3−y(Li,Nd)1/2TiO3 ceramic system at microwave frequency. Mater. Res. Bull. 36 (2001) 547–556CrossRefGoogle Scholar
  11. [11]
    Wheless, W.P., Kajfez, D.: Experimental characterization of multimode microwave resonator using automated network analyzer IEEE. Transaction on Microwave Theory and Techniques, MTT-35 12 (1987) 1263–1270CrossRefGoogle Scholar
  12. [12]
    Itoh, M., Inaguma, Y., Jung, W. H., Chen, L., Nakamura, T.: High lithum ion conductivity in the perovskite-type compounds Li1/2Ln1/2TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ionics 70 (1994) 203–207CrossRefGoogle Scholar
  13. [13]
    Kim, E.S., Yoon, K.H.: Microwave dielectric properties of (1−x)CaTiO3−xLi1/2Sm1/2TiO3 ceramics. J. of the Europ. Ceram. Soc. 23 (2003) 2397–2401CrossRefGoogle Scholar
  14. [14]
    Xu, Q., Chen, M., Chen, W., Liu, H., Kim, B., Ahn, B.: Effect of CoO additive on the structure and electrical properties of (Nd0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater. 56 (2008) [3] 642–650CrossRefGoogle Scholar
  15. [15]
    Huang, C.L., Chen, Y.B., Tasi, C.F.: Influence of B2O3 additions to 0.8(Mg0.95Zn0.05)TiO3−0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric properties. J. of Alloys and Compounds 460 (2008) 675–679CrossRefGoogle Scholar
  16. [16]
    Iddles, D.M., Bell, A.J., Moulson, A.J.: Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics. J. Mater. Sci. 27 (1992) 6303–6307CrossRefGoogle Scholar
  17. [17]
    Kim, E.S., Chun, B.S., Kang, D.H.: Effects of structural characteristics on microwave dielectric properties of (1−x)Ca0.85Nd0.1TiO3−xLnAlO3. J. of the Europ. Ceram. Soc. 27 (2007) 3005–3010CrossRefGoogle Scholar
  18. [18]
    Lin, T.N., Chua, J.P., Wang, S.F.: Structures and properties of Ba0.3Sr0.7TiO3: MgTiO3 ceramic composites. Mater. Lett. 59 (2005) 2786–2789CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • A. E. Reda
    • 1
  • D. M. Ibrahim
    • 1
  • E. R. Souya
    • 2
  • D. A. Abdel Aziz
    • 1
  1. 1.Ceramic DepartmentNational Research CentreCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations