Advertisement

Interceram - International Ceramic Review

, Volume 63, Issue 4–5, pp 186–192 | Cite as

Mineralogical and Physical Changes during Sintering of Plastic Red Clays from Sanaga Swampy Valley, Cameroon

  • N. A. Nzeukou
  • K. Traina
  • E. R. Medjo
  • E. Kamseu
  • A. Njoya
  • U. C. Melo
  • B. V. Kamgang
  • R. Cloots
  • N. Fagel
Raw Materials Worldwide
  • 1 Downloads

Abstract

The sintering behavior and mechanical properties of four alluvial clays sampled from the Sanaga River (sampling sites: Nanga-Eboko, Mbandjock, Batschenga, and Ebebda), central region of Cameroon were investigated. Specimens were shaped by cold pressing and fired between 850 and 1100°C. X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy were used to monitor microstructural modifications and thermal phase transformations. Linear shrinkage, density, open/closed porosity, and water absorption were used to assess the effects of firing cycle on the mechanical properties of the fired compacts. The results showed that between 850 and 1050°C the mineralogical phases are mainly quartz and feldspar. Mullite, spinel, and cristoballite appear at 1100°C together with viscous phases. The values of apparent density (2.62–2.76 g/cm3), open porosity, and flexural strength (3–30 MPa) of the brown compacts suggest the possible use of these clays for earthenware ceramics such as building bricks, roof and floor tiles.

Keywords

plastic red clays sintering mineralogy shrinkage microstructure firing properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aliprandi, G.: Matériaux réfractaires et céramiques technique. 1. Eléments de céramurgie et de technologie. Editions Septima, Paris (1979), 612, ISBN-10: 2-904845-22-4Google Scholar
  2. [2]
    Christidis, G.E.: Advances in the characterization of industrials minerals. European Mineralogical Union, EMU notes. The Mineral. Soc. of Great Britain and Ireland (2011) 485. ISBN-13: 978-0-903056-28-1Google Scholar
  3. [3]
    Manning, D.A.C.: Introduction to industrial minerals. Chapman & Hall Ed., London (1995), 275. ISBN-10: 0-412-55550-6Google Scholar
  4. [4]
    Thibault, P.M., Le Berre, P.: Les argiles pour brique. BRGM. CRMO 65, MIMEE, Yaoundé, Cameroun (1985) 285Google Scholar
  5. [5]
    Njoya, A., Ekodeck, G.E., Nkoumbou, C., Njopwouo, D., Tchoua, F.M.: Matériaux argileux au Cameroun: Gisements et exploitation. Acte de la 1ère conférence sur la valorisation des matériaux argileux au Cameroun, (2001) 13–30Google Scholar
  6. [6]
    Ngon Ngon, G.F., Yongue Fouateu, R., Bito, M.D.L., Bilong, P.: A geological study of clayey laterite and clayey hydromorphic material of the region of Yaoundé (Cameroon): A prerequisite for local material promotion. J. African Earth Sci. 55 (2009) 69–78Google Scholar
  7. [7]
    Nzeukou Nzeugang, A., Fagel, N., Njoya A., Kamgang Kabeyene, V., Medjo Eko, R., Chinje Melo, U.: Mineralogy and physico-chemical properties of alluvial clay from Sanaga valley (Centre, Cameroon): Suitability for ceramic application. Appl. Clay Sci. 83–84 (2013) 238–243Google Scholar
  8. [8]
    American Society for Testing and Materials (ASTM): Standard test method for particle-size analysis of soils for liquid limit, plastic limit, and plasticity index of soils. ASTM D-422-63 and D-4318 (2000) 24Google Scholar
  9. [9]
    American Society for Testing and Materials (ASTM): Standard test methods for moisture, ash, and organic matter of peat and organic soils — ASTM D 2974 (2005) 7Google Scholar
  10. [10]
    American Society for Testing and Materials (ASTM): Water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products, ASTM C 373-72 (1972)Google Scholar
  11. [11]
    American Society for Testing and Materials (ASTM): Flexural properties of ceramic whiteware materials, ASTM C 674-77 (1977)Google Scholar
  12. [12]
    Moore Duane, M., Reynolds, R.C. Jr.: X-ray diffraction and the identification and analysis of clay minerals (1989), 327. ISBN 13: 978-0195087130Google Scholar
  13. [13]
    Richer de Forges, A., Feller, C., Jamagne, M., Arrouays, D.: Perdu dans les triangles de textures. Etude et Gestion des Sols 15 (2008) [2] 97–111Google Scholar
  14. [14]
    Holtz, R.D., Kovacs W.D.: An introduction to geotechnical engineering. Prentice Hall Inc., Englewood Cliffs, N.J. 07632 (1981), 795. ISBN-13: 978-0132436346Google Scholar
  15. [15]
    Celik, H.: Technological characterization and industrial application of two Turkish clays for the ceramic industry. Appl. Clay Sci. 50 (2010) 245–254Google Scholar
  16. [16]
    Sakizci, M., Erdogan, B.A., Yörükogullari, E.: Thermal behavior and immersion heats of selected clays from Turkey. J. Therm. Anal. Calorim. 98 (2009) 429–436Google Scholar
  17. [17]
    Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Giancarlo, P., Chinje Melo, U.: Characterization of porcelain compositions using two china clays. Ceram. Int. 33 (2007) 851–857.Google Scholar
  18. [18]
    Baccour, H., Medhioub, M., Jamoussi, T., Daoud, A.: Mineralogical evaluation and industrial applications of the Triassic clay deposits, southern Tunisia. J. Mater. Charact. 59 (2008) 1613–1622Google Scholar
  19. [19]
    Andji, J., Abba Toure, A., Kra, G., Jumas, J., Yvon, J., Blanchart, P.: Iron role on mechanical properties of ceramics with clays from Ivory Coast. Ceram. Int. 35 (2009) 571–577Google Scholar
  20. [20]
    Andreola, F., Siligardi, C., Manfredini, T., Carobonchi, C.: Rheological behaviour and mechanical properties of porcelain stoneware bodies containing Italian clay added with bentonites. Ceram. Int. 35 (2009) 1159–1164Google Scholar
  21. [21]
    Galos, K.: Influence of mineralogical composition of applied ball clays on properties of porcelain tiles. Ceram. Int. 37 (2011) 851–861Google Scholar
  22. [22]
    Arsenovic, M., Radojevic, Z., Stankovic, S., Lalic, Z., Pezo, L.: What to expect from heavy clay? Ceram. Int. 39 (2013) 1667–675Google Scholar
  23. [23]
    Michailidis, K., Trontzios, G., Sofianska, E.: Chemical and mineralogical assessment of clays from Peloponnese (S. Greece) and their evaluation for utilization in ceramics industry. Bull. Geological Soc. Greece, Proc. 12th Int. Congress Patras, (Greece) May (2010), 2657–2666Google Scholar
  24. [24]
    Toledo, R., dos Santos, D.R., Faria, R.T. Jr., Carrio, J.G., Auler, L.T., Vargas, H.: Gas release during clay firing and evolution of ceramic properties. Appl. Clay Sci. 27 (2004) 151–157Google Scholar
  25. [25]
    Milheiro, F.A.C., Freire, M.N., Silva, A.G.P., Holoanda, J.N.F.: Densification behavior of red firing Brazilian kaolinitic clay. Ceram. Int. 31 (2006) 757–763Google Scholar
  26. [26]
    Rocha, J., Klinowki, J.:29SI and 27Al magic-angle-spinning MNR studies of the thermal transformation of kaolinite. Phys. and Chem. of Min. 17(1990) [2] 179–186Google Scholar
  27. [27]
    Abdelhak, A., Abdallah, S., Redouane, M., Taoufik, R., Moussa, G.: Caractéristiques structurales et mécaniques de céramiques à base d’argiles: Influence de la source de feldspath. C. R. de Chimie 10 (2007) 502–510Google Scholar
  28. [28]
    Bergaya, F., Theng, B.K.G., Lagaly, G.: Handbook of clay science. Elsevier, Amsterdam (2006), 1193. ISBN-13: 978-0-08-044183-2Google Scholar
  29. [29]
    Kam, S., Zerbo, L., Bathiebo, J., Soro, J., Naba, S., Wenmenga, U., Traoré, K., Gomina, M., Blanchart, P.: Permeability to water of sintered clay ceramics. Appl. Clay Sci. 46 (2009) 351–357Google Scholar
  30. [30]
    Karfa, T.: Frittage à basse température d’une argile Kaolinitique du Burkina Faso, transformations thermiques et réorganisations structurales. Ph.D. Thesis, Université de Limoges, France (2003)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • N. A. Nzeukou
    • 1
    • 2
  • K. Traina
    • 4
  • E. R. Medjo
    • 2
  • E. Kamseu
    • 1
  • A. Njoya
    • 5
  • U. C. Melo
    • 1
  • B. V. Kamgang
    • 2
  • R. Cloots
    • 4
  • N. Fagel
    • 3
  1. 1.Local Material Promotion Authority (MIPROMALO)YaoundéCameroon
  2. 2.Laboratory of Alterology and Engineering GeologyUniversity of Yaoundé IYaoundéCameroon
  3. 3.Laboratory of Clays, Geochemistry and Sedimentary Environments (AGEs)Liège 1Belgium
  4. 4.Group of Research in Energy and ENnvironment from MATerials (GREEN-MAT)Advanced Powder Technologies and Innovative Solutions (APTIS)Liège 1Belgium
  5. 5.Fine Arts Institute of Foumban (IBAF)University of DschangFoumbanCameroon

Personalised recommendations