Interceram - International Ceramic Review

, Volume 63, Issue 3, pp 133–135 | Cite as

Effect of Temperature and Additives on the Hydration Behaviour of MgO Powders

  • Q. Jia
  • J. Zhang
  • T. Ge
  • X. LiuEmail author
Special Technologies


High performance MgO-based castables have many advantages for refining clean steel. However, hydration of MgO powder limits the application of MgO-based castables. The effects of temperature, hydration time and additives (calcium aluminate cement and microsilica) on the hydration behaviour of MgO powders are investigated in this paper. The results show that the hydration content of MgO powders increases noticeably with an increase of hydration time and temperature, indicating that the intensity of brucite (Mg(OH)2) diffraction peaks and the brucite amount increase. With 5 mass-% microsilica or cement addition, the amount of hydrated product Mg(OH)2 decreases noticeably from 26 to 11 mass-% and 19 mass-%. Microsilica has a retarding influence on the hydration of magnesia.


hydration behaviour MgO powders brucite microsilica calcium aluminate cement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sandberg, B., Myhre, B., Holm, J.L.: Castables in the system MgO-Al2O3-SiO2, Proc. of UNITECR ’95, Kyoto, Japan, (1995) 173–180Google Scholar
  2. [2]
    Li, N., Wei, Y.W., Wu, H.P., et al.: Properties of MgO castables and effect of reaction in mcrosllica MgO bond system. Proc. of UNITECR’99, Berlin, Germany, (1999) 97–102Google Scholar
  3. [3]
    Zhou, N.S., Zhang, S.H., Hu, S.H., et al.: MgO-SiO2-H2O bonded MgO based castables, Part 2: Effect of pumping and wet shotcreting on cold and hot properties and slag resistance. Proc. of UNITECR’ 03, Osaka, Japan, (2003) 272–275Google Scholar
  4. [4]
    Layden, G.K., Brindley, G.W.: Kinetics of vapor-phase hydration of magnesium oxide. J Amer. Ceram Soc 46 (1963) [11] 518–522CrossRefGoogle Scholar
  5. [5]
    Kitamura, A., Onizuka K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overseas 16 (1995) [3] 3–11Google Scholar
  6. [6]
    Saloma, R., Pandolfelli, V.C.: Magnesia sinter hydration-dehydration behavior in refractory castables. Ceram Internat. 34 (2008) [8] 1829–1834CrossRefGoogle Scholar
  7. [7]
    Yoschida, A., Nemoto, T., Kaneyasu, A.: Evaluation method for hydration resistance of magnesia fine powder and effect of B2O3 content in magnesia raw materials. Proceedings of UNITECR’03, Osaka, Japan, (2003) pp. 433–436Google Scholar
  8. [8]
    Kaneyasu, A., Yamamoto, S., Yoshida, A.: Magnesia raw materials with improved hydration resistance. Taikabutsu Overseas 17 (1996) [2] 21–26Google Scholar
  9. [9]
    Ahari, K.G., Sharp, J.H., Lee, W.E.: Hydration of Refractory Oxides in Castable Bond Systems II: Alumina Silica and Magnesia Silica Mixtures. J. Europ. Ceram Soc. 23 (2003) [16] 3071–3077CrossRefGoogle Scholar
  10. [10]
    Sako, E.Y., Braulio, M.A.L., Pandolfelli, V.C.: Microstructural evolution of magnesia-based castables containing microsilica. Ceram. Internat. 38 (2012) [8] 6027–6033CrossRefGoogle Scholar
  11. [11]
    Salomao, R., Pandolfelli, V.C.: The role of hydraulic binders on magnesia containing refractory castables: Calcium aluminate cement and hydratable alumina. Ceram. Internat. 35 (2009) [8] 3117–3124CrossRefGoogle Scholar
  12. [12]
    Amaral, L.F., Oliveira, I.R., Bonadia, P., et al.: Chelants to inhibit magnesia (MgO) hydration. Ceram. Internat. 37 (2011) [5] 1537–1542CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.High Temperature Ceramics InstituteZhengzhou UniversityZhengzhouPR China

Personalised recommendations