A Comprehensive Review of Recent Advances in Magnesia Carbon Refractories

  • Soumya Mukherjee
  • S. Pramanik
  • Siddhartha Mukherjee
Review Papers


The paper describes state of the art developments in the formulation of MgO-C refractories, products that have been an integral part of the iron and steel industry over the last two decades. The effects of important techniques and variations in operational parameters are reviewed and summarized, including the impact of antioxidants on oxidation behaviour, incorporation of graphite or nano carbon content, and the influence of electromagnetic fields on slag corrosion resistance. Most of the major experimental findings related to properties of MgO-C refractories are a focus of the article. It addresses the oxidation kinetics of magnesia carbon refractory bricks, the microstructure of graphite and nano carbon-containing MgO-C refractories, determination of the mineralogical composition of MgO-C refractories by the Rietvelt method, and the mechanical behaviour of these refractories.


MgO-C refractories nano carbon mechanical properties GONs thermochemistry microstructure Young’s modulus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Annual book of ASTM standards, Refractories: Activated carbon. Advanced ceramics. 15.01, pp.19 (2003)Google Scholar
  2. [2]
    Pickering, G.D., Batchelor, J.D.: MgO reactions in BOF refractories. Carbon 50 (1971) 611–614Google Scholar
  3. [3]
    Figueiredo Jr, A., Bellandi, N., Vanola, A., Zamboni, I.: Technological evolution of magnesia-carbon bricks for steel ladles in Argentina. Iron and Steel Technol. 1 (2004) 42–47Google Scholar
  4. [4]
    Buchebner, G., Sampayo, L., Samm, V., Blondot, P., Peruzzi, S., Boulanger, P.: ANKERSYN — A new generation of carbon-bonded magnesia carbon bricks. RHI Bulletin (2008) 24–27Google Scholar
  5. [5]
    Gokce, A.S., Gurcan, C., Ozgen, S., Aydin, S.: The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks. Ceram. Inter. 34 (2008) 323–330CrossRefGoogle Scholar
  6. [6]
    Rocha, V.G., Menéndez, R., Santamaría, R., Blanco, C., Granda, M.: Oxidation behaviour of magnesiacarbon materials prepared with petroleum pitch as binder. J. Analyt. and Appl. Pyrolysis 88 (2010) 207–212CrossRefGoogle Scholar
  7. [7]
    Sani, M.A.F., Yamaguchi, A.: Oxidation kinetics of MgO-C refractory bricks. Ceram. Inter. 28 (2002) 835–839CrossRefGoogle Scholar
  8. [8]
    Bag, M., Adak, S., Sarkar, R.: Study on low carbon containing MgO-C refractory: Use of nano carbon. Ceram. Inter. 38 (2012) 2339–2346CrossRefGoogle Scholar
  9. [9]
    Bo, L., Jia-lin, S., Guang-sheng, T., Kai-qi, L., Lin, L., Yong-feng, L.: Effects of nanometer carbon black on performance of low-carbon MgO-C composites. J. Iron and Steel Res. Inter. 17 (2010) 75–78Google Scholar
  10. [10]
    Bag, M., Adak, S., Sarkar, R.: Nano carbon containing MgO-C refractory: Effect of graphite content. Ceram. Inter. 38 (2012) 4909–4914CrossRefGoogle Scholar
  11. [11]
    Guo, M., Parada, S., Jones, P.T., Dyck, J.V., Boydens, E., Durinck, D., Blanpain, B., Wollants, P.: Degradation mechanisms of magnesia-carbon refractories by high-alumina stainlesssteel slags under vacuum. Ceram. Inter. 33 (2007) 1007–1018CrossRefGoogle Scholar
  12. [12]
    Li, X., Zhu, B., Wang, T.: Effect of electromagnetic field on slag corrosion resistance of low carbon MgO-C refractories. Ceram. Inter. 38 (2012) 2105–2109CrossRefGoogle Scholar
  13. [13]
    Li, X., Zhu, B., Wang, T.: Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO-C refractories. Ceram. Inter. 38 (2012) 2883–2887CrossRefGoogle Scholar
  14. [14]
    Aneziris, C.G., Hubalkova, J., Barabas, R.: Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions. J. Eur. Ceram. Soc. 27 (2007) 73–78CrossRefGoogle Scholar
  15. [15]
    Zhang, S., Marriott, N.J., Lee, W.E.: Thermochemistry and microstructures of MgO-C refractories containing various antioxidants. J. Eur. Ceram. Soc 21 (2001) 1037–1047CrossRefGoogle Scholar
  16. [16]
    Zhang, S., Lee, W.E.: Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories. J. Eur. Ceram. Soc 21 (2001) 2393–2405CrossRefGoogle Scholar
  17. [17]
    de la Torre, A.G., Valle, F.J., De Aza, A.H.: Direct mineralogical composition of a MgO-C refractory material obtained by Rietveld methodology. J. Eur. Ceram. Soc 26 (2006) 2587–2592CrossRefGoogle Scholar
  18. [18]
    Schmitt, N., Berthaud, Y., Poirier, P.: Tensile Behaviour of magnesia carbon refractories. J. Eur. Ceram. Soc. 20 (2000) 2239–2248CrossRefGoogle Scholar
  19. [19]
    Baudson, H., Debucquoy, F., Huger, M., Gaulta C., Rigaud, M.: Ultrasonic measurement of Young’s Modulus MgO/C refractories at high temperature. J. Eur. Ceram. Soc 19 (1999) 1895–1901CrossRefGoogle Scholar
  20. [20]
    Musante, L., Martorello, L.F., Galliano, P.G., Cavalieri, A.L., Martinez, A.G.T.: Mechanical behaviour of MgO-C refractory bricks evaluated by stressstrain curves. Ceram. Inter. 38 (2012) 4035–4047CrossRefGoogle Scholar
  21. [21]
    Zhu, T., Lin, Y., Luo, M., Sang, S., Wang, Q., Zhao, L., Li, Y., Li, S.: Microstructure and mechanical properties of MgO-C refractories containing graphite oxide nanosheets (GONs). Ceram. Inter. 39 (2013) 3017–3025CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Soumya Mukherjee
    • 1
  • S. Pramanik
    • 1
  • Siddhartha Mukherjee
    • 1
  1. 1.Department of Metall. and Mater. EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations