Recycling of Fish Bone Ash in the Preparation of Stoneware Tiles

  • S. M. NagaEmail author
  • M. Awaad
  • N. El-Mehalawy
  • M. S. Antonious
Tile & Brick


This work studied the recycling of fish bone ash by using it in stoneware tiles. Tiles containing up to 20 mass-% crushed and fired fish bone were prepared from starting materials characterized with respect to their chemical composition and X-ray diffraction and thermal properties. The effects of added fish bone ash were studied by measuring the physical, mechanical and thermal properties of sintered tile bodies. Results revealed that replacement of potash feldspar by fish bone ash in the tiles accelerated formation of anorthite phase and hindered the creation of mullite. The tested samples also had lower thermal expansion than conventional tiles, and displayed increased porosity and decreased bulk density as their fish bone ash content increased.


fish bone ash technological properties anorthite mullite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lin, K.L.: The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for clay in eco-brick. J. Clean. Prod. 15 (2007) 1755–1759CrossRefGoogle Scholar
  2. [2]
    Bernardo, E., Esposito, L., Rambaldi, E., Tucci, A., Hreglich, S.: Recycle of waste glass into glass-ceramic stoneware. J. Am. Ceram. Soc. 91 (2008) 2156–2162CrossRefGoogle Scholar
  3. [3]
    Bernardo, E., Esposito, L., Rambaldi, E., Tucci, A.: Glass-based stoneware as a promising route for the recycling of waste glasses. Adv. Appl. Ceram. 108 (2009) 2–8CrossRefGoogle Scholar
  4. [4]
    Zhao, H., Poon, C.S., Ling, T.C.: Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. J. Clean. Prod. 51 (2013) 184–190CrossRefGoogle Scholar
  5. [5]
    Souza, G.P., Rambaldi, E., Tucci, A., Esposito, L., Lee, W.E.: Microstructural variation in porcelain stoneware as a function of flux system. J. Am. Ceram. Soc. 87 (2004) [10] 1959–1966CrossRefGoogle Scholar
  6. [6]
    Andreola, F., Barbieri, L., Bondioli, F., Lancellotti, I., Miselli, P., Ferreri, A.M.: Recycling of screen glass into new traditional ceramic materials. Int. J. Appl. Ceram. Technol. 7 (2010) [6] 909–917CrossRefGoogle Scholar
  7. [7]
    Bernardo, E., Dattoli, A., Bonomo, E., Esposito, L., Rambaldi, E., Tucci, A.: Application of an industrial waste glass in glass-ceramic stoneware. Int. J. Appl. Ceram. Technol. 8 (2011) [5] 1153–1162CrossRefGoogle Scholar
  8. [8]
    Marinoni, N., D’Alessio, D., Diella, V., Pavese, A., Francescon, F.: Effects of soda-lime-silica waste glass on mullite formation kinetics and microstructures development in vitreous ceramics. J. Envir. Manag. 124 (2013) 100–107CrossRefGoogle Scholar
  9. [9]
    Binhussain, M.A., Marangoni, M., Bernardo, E., Colombo, P.: Sintered and glazed glass-ceramics from natural and waste raw materials. Ceram. Inter. 40 (2014) 3543–3551CrossRefGoogle Scholar
  10. [10]
    Wannagon, A., Sornlar, W., Choeycharoen, P.: Crystalline phases and physical properties of modified stoneware body with glaze sludge. Ceram. Inter. 38 (2012) 4485–4494CrossRefGoogle Scholar
  11. [11]
    Zanelli, C., Baldi, G., Dondi, M., Ercolani, G., Guarini, G., Raimondo, M.: Glass-ceramic frits for porcelain stoneware bodies: Effects on sintering, phase composition and technological properties. Ceram. Inter. 34 (2008) 455–465CrossRefGoogle Scholar
  12. [12]
    Tichell, M.T, Sánchez, J., Nebol-Diaz, I.: Glass-ceramic glazes with aluminate and aluminosilicate crylizations adapted to porcelain tile bodies. In: Proc. QUALICER, VI World Congress on Ceramic Tile Quality, Castellón, Spain, 12–15 March (2000) 237–251Google Scholar
  13. [13]
    Moreno, A., Garcia-Ten, J., Cabedo, J., Berge, R., Colom, J.: Feasibility of using frits as raw materials in porcelain tile compositions. In: Proc. of QUALICER, VI World Congress on Ceramic Tile Quality, Castellón, Spain, 12–15 March (2000) 465–473Google Scholar
  14. [14]
    Reis, A.S.: Estudo do aproveitamento do residuo de beneficiamento de residuo de rochas ornamentais na fabricaçăo de ladrihlo hidráulico piso tátil. Master Thesis, UFES-PPGEC, Vitóra (2008)Google Scholar
  15. [15]
    Souza, A.J., Pinheiro, B.C.A., Holanda, J.N.F.: Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Envir. Manag. 91 (2010) 685–689CrossRefGoogle Scholar
  16. [16]
    Torres, P., Fernandes, H.R., Oehero, S., Ferreira, J.M.F.: Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. J. Eur. Ceram. Soc. 29 (2009) 23–30CrossRefGoogle Scholar
  17. [17]
    Hojamberdiev, H., Eminov, A., Xu, Y.: Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Inter. 37 (2011) 871–876CrossRefGoogle Scholar
  18. [18]
    Monteiro, M.A., Jordan, M.M., Almendro-Candel, M.B., Senfeliu, T., Hernandez-Crespo, M.S.: The use of a calcium carbonate residue from the stone industry in manufacturing of ceramic tile bodies. Appl. Clay Sci. 43 (2009) 186–189CrossRefGoogle Scholar
  19. [19]
    Acchar, W., Dultra, E.J.V., Segadaes, A.M.: Untreated coffee husk ashes used as flux in ceramic tiles. Appl. Clay Sci. 75–76 (2013) 141–147CrossRefGoogle Scholar
  20. [20]
    Hola, M., Kalvoda, J., Novakova, H., Skoda, R., Kanicky, V.: Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling. Appl. Surf. Sci. 257 (2011) [6] 1932–1940CrossRefGoogle Scholar
  21. [21]
    Ozawa, M., Suzuki, S.: Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J. Am. Ceram. Soc. 85 (2002) [5] 1315–1317CrossRefGoogle Scholar
  22. [22]
    De Friend, K.A., Wiesner, M.R., Barron, A.R.: Alumina and alumina ultra-filtration membranes derived from alumina nanoparticles. J. Membr. Sci. 224 (2003) 11–28CrossRefGoogle Scholar
  23. [23]
    Markovic, M., Fowler, B.O., Tung, M.S.: Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J. Res. Natl. Inst. Stand. Technol. 109 (2004) 553–568CrossRefGoogle Scholar
  24. [24]
    Norris, A.W., Taylor, D., Thorpe, I.: Range curves: An experimental method for the study of vitreous pottery bodies. Trans. J. Br. Ceram. Soc. 78 (1979) 102–108Google Scholar
  25. [25]
    Stathis, G., Ekonomakou, A., Stournaras, C.J., Ftikos, C.: Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitaryware porcelain. J. Eur. Ceram. Soc. 24 (2004) 2357–2366CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • S. M. Naga
    • 1
    Email author
  • M. Awaad
    • 1
  • N. El-Mehalawy
    • 1
  • M. S. Antonious
    • 2
  1. 1.Ceramics DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Chemistry DepartmentAin Shams UniversityCairoEgypt

Personalised recommendations