Advertisement

Keramische Zeitschrift

, Volume 68, Issue 1, pp 43–47 | Cite as

Additive Herstellung mehrkomponentiger metallischer und keramischer Bauteile mittels Thermoplastischen 3D-Druckes (T3DP)

  • A. Härtel
  • U. Scheithauer
  • E. Schwarzer
  • S. Weingarten
  • T. Slawik
  • H.-J. Richter
  • T. Moritz
Forschung & Technik
  • 14 Downloads

Kurzfassung

Additive Fertigungsverfahren erlauben erstmals Bauteile funktionsstatt fertigungsgerecht auszulegen und eröfnen damit die Möglichkeit zur weiteren Funktionalisierung und Miniaturisierung. Die Kombination verschiedener Materialien in einem additiv gefertigten Bauteil vergrößert die Anzahl der Freiheitsgrade noch weiter.

Der Thermoplastische 3D-Druck erlaubt sowohl die additive Verarbeitung von metallischen, als auch von keramischen Suspensionen. Infolge der Schwindungsanpassung verschiedener Suspensionen aufeinander wird die Co-Sinterung von Bauteilen möglich. Auf diese Weise lassen sich z.B. die Werkstoffe Zirkonoxid und rostfreier Edelstahl und somit auch Eigenschaften wie elektrisch und thermisch leitfähig und nichtleitfähig sowie spröde und duktil in einem Bauteil kombinieren.

Die entwickelten Suspensionen besitzen ein thermoplastisches Verhalten. Schon bei Verarbeitungstemperaturen um 100 °C weisen diese geringe Viskositäten auf, obwohl Feststofgehalte bis zu 67 Vol.-% realisiert werden konnten. Damit ist sowohl die Ablage von Filamenten als auch von einzelnen Tropfen möglich.

Stichwörter

Additive Manufacturing T3DP Multimaterialkomponenten FGM 

Additive Manufacturing of Metallic and Ceramic Multimaterial Components Using Thermoplastic 3D Printing (T3DP)

Abstract

Additive manufacturing (AM) allows the designing of the components oriented to function instead to fabrication. Thus, the possibility for further functionalization and miniaturization is provided. By the combination of diferent materials in one single AM component the number of degrees of freedom can be increased even further.

T3DP allows both: the additive processing of metallic, as well as of ceramic suspensions. Due to the adjustment of the shrinkage behavior of the specifc suspensions, the co-sintering of multi-material components is possible. Combining materials like zirconia and stainless steel allow certain property adjustments e.g. electrical and thermal conductivity or non-conductivity, brittleness and ductility.

The developed suspensions show a thermoplastic behavior. At processing temperatures of around 100 °C low viscosities at high solid loadings up to 67 vol-% were realized. In that way, both the deposition of filaments and individual droplets is possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Khaliyfa, A., Meyer, W., Schnabelrauch, M., Vogt, S., Richter, H.-J.: Manufacturing of Biocompatiblöe Ceramic Bone Susbstitues by 3D-Printing. cf/Ber. DKG 83 (2006) 13Google Scholar
  2. [2]
    Maleksaeedi, S., Eng, H., Wiria, F.E., Ha, T.M.H., He, Z.: Property enhancement of 3D-printed alumina ceramics using vacuuminfltration J. Mat. Processing Techn. 214 (2014) 1301–1306CrossRefGoogle Scholar
  3. [3]
    Webseite der Fa. Schunk: http://www.schunk-group.com/de/anwendungen/show/Category.1533/action/feList/controller/Product/, Stand 26.02.1Google Scholar
  4. [4]
    Lenk, R., Nagy, A., Richter, H.-J., Techel, A.: Material Development for Laser Sintering of Silicon Carbide. cf/Ber. DKG 83 [13] (2006)Google Scholar
  5. [5]
    Travitzki, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I, Schlier, L., Schlordt, T., Greil, P.: Additive Manufacturing of Ceramic-Based Materials. Adv. Eng. Mat. 16 (2014) [6] 729–754CrossRefGoogle Scholar
  6. [6]
    Grifth, M. L., Halloran, J.W.: Ultraviolet curing of highly loaded ceramic suspensions for stereolithography of ceramics. Proceedings of the Solid Freeform Fabrication Symposium, Austin/TX, USA (1994) 396–403Google Scholar
  7. [7]
    Brady, G. A., Halloran, J. W.: Stereolithography of ceramic suspensions. Rap. Prot. J. 3 [2] (1997) 61–65CrossRefGoogle Scholar
  8. [8]
    Dufaud, O., Corbel, S.: Stereolithography of PZT ceramic suspensions. Rap. Prot. 8 [2] (2002) 83–90Google Scholar
  9. [9]
    Homa, J.: Rapid Prototyping of high-performance ceramics opens new opportunities for the CIM industry. Powder Injection Moulding International 6 [3] (2012) 65–68Google Scholar
  10. [10]
    Felzmann, R., Gruber, S., Mitteramskogler, G., Tesavibul, P., R. Boccaccini, A. R., Liska R., Stampf, J.: Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. Adv. Eng. Mat. 14, No. 12 (2012) 1052–1058CrossRefGoogle Scholar
  11. [11]
    de Hazan, Y., Thähnert, M., Trunec, M., Misak, J.: Robotic deposition of 3d nano-composite and ceramic fber architectures via UV curable colloidal inks. J. Europ. Ceram. Soc. 32 (2012) 1187–1198CrossRefGoogle Scholar
  12. [12]
    Agarwala, M. K., Weeren, R. van, Bandyopadhyay, A., Whalen, P. J., Safari, A., Danforth, S.C.: Fused deposition of ceramics and metals: an overview (1996)Google Scholar
  13. [13]
    Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rap. Prot. J. 11 (2005) [4] 214–220CrossRefGoogle Scholar
  14. [14]
    Cai, K., Román-Manso, B., Smay, J. E., Zhou, J., Osendi, M. I., Belmonte, M., Miranzo, P.: Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting. J. Amer. Ceram. Soc. 95 [8] (2012) 2660–2666CrossRefGoogle Scholar
  15. [15]
    Mott, M., Evans, J. R. G.: Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mat. Sci. Eng. A271 (1999) 344–352Google Scholar
  16. [16]
    Polsakiewicz, D., Kollenberg, W.: Comparison of Silver Sources for Silver/Glass Compounds by Multi-Material 3D-Printing. Proceedings: IMAPS/ACerS 11th International CICMT Conference and Exhibition, April 20–23 (2015) 303–313Google Scholar
  17. [17]
    Gingter, P, Wätjen, A.M., Kramer, M., Telle, R.: Functionally Graded Ceramic Structures by Direct Thermal Inkjet Printing. J. Ceram. Sci. Tech. 06 (2015) [02] 119–124Google Scholar
  18. [18]
    Lewis, J.A.: Direct-write assembly of ceramics from colloidal inks. Current Opinion in Solid State & Materials Science 6 (2002) 245–250CrossRefGoogle Scholar
  19. [19]
    Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., Fischer, H.: Direct Inkjet Printing of Dental Prostheses Made of Zirconia. J. Dent. Res. 88 [7] (2009) 673–676CrossRefGoogle Scholar
  20. [20]
    Bräuer, P., Lindner, M., Studnitzky, T., Kieback, B., Rudolph, J., Werner, R., Krause, G.: 3D Sceen Printing Technology — Opportunities to use Revolutionary Materials and Machine Designs. 2nd International Electric Drives Production Conference (EDPC) (Nürnberg, 15.–18. Oktober 2012)Google Scholar
  21. [21]
    Zhang, Y., He, X., Han, J., Du, S., Zhang, J.: Al2O3 Ceramics Preparation by LOM (Laminated Object Manufacturing). Int J Adv Manuf Technol (2001) 17:531–534CrossRefGoogle Scholar
  22. [22]
    Scheithauer, U., Schwarzer, E., Richter, H.J., Moritz, T.: Thermoplastic 3D Printing — An Additive Manufacturing Method for Producing Dense Ceramics, JACT, 1–6 (2014)Google Scholar
  23. [23]
    Scheithauer, U., Bergner, A., Schwarzer, E., Richter, H.J., Moritz, T.: Studies on thermoplastic 3D printing of steel-zirconia composites. J. Mat. Res. 17 (2014) 1931–1940CrossRefGoogle Scholar
  24. [24]
    Scheithauer, U., Slawik, T., Schwarzer, E., Richter, H.J., Moritz, T., Michaelis, A.: Additive Manufacturing of Metal-Ceramic-Composites by Thermoplastic 3D-Printing. J. Ceram. Sci. Tech. 06 (2015) [02] 125–132Google Scholar
  25. [25]
    Scheithauer, U., Schwarzer, E., Haertel, A., Richter, H.J., Moritz, T., Michaelis, A.: Processing of thermoplastic suspensions for Additive Manufacturing of Ceramic- and Metal-Ceramic-Composites by Thermoplastic 3D-Printing (T3DP). 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications, peer-reviewed manuscript, accepted for publication in 2016CrossRefGoogle Scholar
  26. [26]
    Çetinel, F.A., Bauer, W., Müller, M., Knitter, R., Haußelt, J.: Infuence of dispersant, storage time and temperature on the rheological properties of zirconia-parafn feedstocks for LPIM. J. Europ. Ceram. Soc. 30 (2010) 1391–1400CrossRefGoogle Scholar
  27. [27]
    Scheithauer, U., Haderk, K., Richter, H.-J., Petasch, U., Michaelis, A.: Infuence of the kind and amount of pore forming agents on the thermal shock behaviour of carbon-free refractory components produced by multilayer technology, refractories WORLD-FORUM, 4, Issue 1, 130–136, (2011)Google Scholar
  28. [28]
    Scheithauer, U., Slawik, T., Haderk, K., Moritz, T., Michaelis, A.: Development of Planar and Cylindrical Refractories with Graded Microstructure”, UNITECR 2013, 13th Biennial Worldwide Congress on Refractories, Victoria, Canada, In: Electronic Proceedings, Paper05-08-peer-reviewed, 339–343, (2013)Google Scholar
  29. [29]
    Scheithauer, U., Schwarzer, E., Otto, C., Slawik, T., Moritz, T., Michaelis, A.: Ceramic and metal-ceramic components with graded microstructure, 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications, peer-reviewed manuscript, accepted for publication in 2016CrossRefGoogle Scholar
  30. [30]
    Slawik, T., Bergner, A., Puschmann, R., Franke, P., Raethel, J., Behnisch, T., Scholl, R., Berger, L-M., Moritz, T., Zelm, R., Gude, M., Michaelis, A., Beyer, E., Lyens, C., Großmann, H., Kieback, B.: Metal-Ceramic Layered Materials and Composites Manufactured Using Powder Techniques. Adv. Eng. Mat. 16 [10] (2014) 1293–1302CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • A. Härtel
    • 1
  • U. Scheithauer
    • 1
  • E. Schwarzer
    • 1
  • S. Weingarten
    • 1
  • T. Slawik
    • 1
  • H.-J. Richter
    • 1
  • T. Moritz
    • 1
  1. 1.Fraunhofer IKTSDresdenGermany

Personalised recommendations