Advertisement

Keramische Zeitschrift

, Volume 67, Issue 4, pp 208–215 | Cite as

Experimentelle Untersuchungen zum Liquidus-Bereich des Systems ZrO2-SiO2 mittels aeroakustischer Levitation, Teil 1: Monotektikum und Mischungslücke

  • R. Telle
  • F. Greffrath
  • R. Prieler
Forschung und Technik

Kurzfassung

Das technisch wichtige pseudobinäre System ZrO2-SiO2 wurde im Liquidus-Bereich mittels tiegelfreier aeroakustischer Levitation und Hochgeschwindigkeitskamera hinsichtlich der Mischungslücke untersucht. Das Monotektikum L1 = ZrO2 + L2 bei 2250 °C mit der Entmischung L1 + L2 zwischen 59,5 Mol-% und 78 Mol-% SiO2 konnte erstmals seit 1956 experimentell bestätigt werden. Schmelzezusammensetzungen innerhalb der Mischungslücke zeigen eine turbulente Marangoni-Konvektion, die beim Abschrecken zum Einfrieren von Bénard-Marangoni-Zellen führt. Der erste Teil der Veröffentlichung befasst sich mit der wechselreichen Geschichte des Phasendiagramms sowie mit der Primärkristallisation von ZrO2 im stabilen Liquidus-Solidus-Bereich. Der zweite Teil behandelt die weitere Reifung und Differentiation der entmischten Schmelzen während der Unterkühlung. Die metastabile Fortsetzung der Mischungslücke bis 1000 °C wird detailliert untersucht.

Stichwörter

Phasendiagramm ZrO2-SiO2 Mischungslücke aero-akustische Levitation Primärerstarrung von ZrO2 

Study of the Pseudo-Binary ZrO2-SiO2 System in the Liquidus Range by Containerless Aero-Acoustic Levitation: Monotectic Equilibrium and Miscibility Gap

Abstract

The technically important pseudo-binary ZrO2-SiO2 system has been studied in the liquidus range regarding the miscibility gap by means of containerless aeroacoustic levitation and an ultra high-speed video recording. The monotectic equilibrium L1 = ZrO2 + L2 at 2250 °C with the immiscibility range L1 + L2 between 59.5 Mol-% and 78 Mol-% SiO2 has been proven experimentally first time since 1956. Liquid phase composition inside the miscibility gap resulted in turbulent Marangoni-convection, which can be frozen during quenching leading to Bénard-Marangoni-cells. The first part of this paper deals with the confusing history of the phase diagram as well as with the primary crystallisation of ZrO2 within the stable liquid-solid range. The second part is devoted to the further ripening and differentiation of the immiscible liquids during undercooling. The metastable continuation of the miscibility gap down to 1000 °C will be addressed in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Washburn, E.W., Libman, E.E.: An approximate determination of melting point diagram of the system zirconia-silica. J. Amer. Ceram. Soc. 3 (1920) [8] 634–640Google Scholar
  2. [2]
    Barlett, H.B.: X-ray and microscopic studies of silicate melts containing ZrO2. J. Amer. Ceram. Soc. 14 (1931) 837–843CrossRefGoogle Scholar
  3. [3]
    Zhirnova, N.: Fusion Diagram of the System ZrO2-SiO2 [Schmelzpunktdiagramm des Systems Zirkondioxyd-Kieselsäure. Festlegung sämtlicher ZrO2-SiO2-Gemische]. J. General Chemistry (USSR) 4 (1934) 1464–1470; All-Union Ceramic Research Institute, Light Ind. Press, Leningrad 7 (1934) [45]Google Scholar
  4. [4]
    Geller, R.F., Yavorsky, P.J. Effects of Some Oxide Additions on the Thermal Length Changes of Zirconia. Nat. Bur. Stds. J. of Research 35 (1945) 87–110CrossRefGoogle Scholar
  5. [5]
    Geller, R.F., Lang, S.M.: Fig. 513 in: Phase Diagrams for Ceramists Suppl. 1, Part II; H.F. McMurdie and F. P. Hall [Eds.]. J. Amer. Ceram Soc. 32 (1949) [12] 157Google Scholar
  6. [6]
    Curtis, C.E., Sowman, H.G.: Investigations of the Thermal Dissociation, Reassociation and Synthesis of Zircon. J. Amer. Ceram. Soc. 36 (1953) 190–198CrossRefGoogle Scholar
  7. [7]
    Butterman, W.C., Forster, W.R: Zircon Stability and the ZrO2-SiO2 Phase Diagram. Amer. Mineral. 52 (1967) 880–885Google Scholar
  8. [8]
    Kaiser, A., Lobert, M., Telle, R.: Thermal Stability of Zircon (ZrSiO4). J. Europ. Ceram. Soc. 28 (2008) [11] 2199–2211CrossRefGoogle Scholar
  9. [9]
    Toropov, N.A., Galakhov: Liquation in the System ZrO2-SiO2. Izv. Akad Nauk SSSR, Otd. Khim. Nauk. 5 (1956) [2] 153–156, Bulletin of the Academy of Sciences of the USSR, Division of chemical science 5 (1956) [2] 153–156Google Scholar
  10. [10]
    Wu, P.: Optimisation and Calculation of Thermodynamic Properties and Phase Diagrams in Multi-Component Oxide Systems. Ph.D. Thesis, University of Montreal (1992)Google Scholar
  11. [11]
    Evans, A.M., Williamson, J.P.H., Glasser, F.P.: Microstructure of plasma dissociated zircon and liquid immiscibility in the ZrO2-SiO2 system. J. Mat. Sci. 15 (1980) 2325–2330CrossRefGoogle Scholar
  12. [12]
    Evans, A.M., Williamson, J.P.H.: Composition and microstructure of dissociated zircon produced in a plasma furnace. J. Mater. Sci. 12 (1977) 779CrossRefGoogle Scholar
  13. [13]
    Ball, R.G.J., Mignanelli, M.A., Barry, T.I., Gisby, J.A.: The calculation of phase equilibria of oxide core-concrete systems. J. Nucl. Mat. 201 (1993) 238–249CrossRefGoogle Scholar
  14. [14]
    Anseau, M.R., Biloque, J.P., Fierens, P.: Some studies on the thermal solid state stability of zircon. J. Mater. Sci. 11 (1976) 578–582CrossRefGoogle Scholar
  15. [15]
    Schuiling, R.D., Vergouwen, L., van der Rijst, H.: Gibbs energies of formation of zircon (ZrSiO4), thorite (ThSiO4), and phenacite (Be2SiO4). Amer. Mineral. 61 (1976) 166–168Google Scholar
  16. [16]
    Lang, S.M., Franklin, E.W., Tylutki, N.J.: Some studies on monoclinic zirconium dioxide from room temperature to 1095 °C. Owens-Illinois Technical Center, Toledo, Ohio; Report ARL-65-140 1, DOE-No. AF33 (615)-1258; April 30th, 1965Google Scholar
  17. [17]
    Keler, E.K., Andreyeva, A.B.: Investigation of region of solid solutions in system ZrO2-SiO2. Refractories 3 [7–8] (1962) 253–258CrossRefGoogle Scholar
  18. [18]
    Barin, I.: Thermochemical Data of Pure Substances. Verlag Chemie, Weinheim, Germany (1989)Google Scholar
  19. [19]
    Greffrath, F., Prieler, R., Telle, R.: A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation. Infrared Physics and Technology (2014) 333–337Google Scholar
  20. [20]
    Nordine, P.C.; Merkeley, D., Sickel, J., Finkelman, S., Telle, R., Kaiser, A., Prieler, R.: A levitation instrument for containerless study of molten materials. Rev. Sci. Instrum. 83 (2012) 125107–125114CrossRefGoogle Scholar
  21. [21]
    Telle, R., Greffrath, F., Prieler, R.: Direct observation of the liquid miscibility gap in the zirconia-silica system. J. Europ. Ceram. Soc. (2015), im Druck; dx.doi.org/10.1016/j.jeuceramsoc.2015.07.015Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.RWTH AachenLehrstuhl für Keramik und Feuerfeste Werkstoffe, Institut für GesteinshüttenkundeAachenGermany

Personalised recommendations