Advertisement

Keramische Zeitschrift

, Volume 66, Issue 5–6, pp 301–306 | Cite as

Synthetisches amorphes SiO2 (SAS) für die keramische Industrie

  • L. Fernandes
  • C. C. de Arruda
  • A. D. V. Souza
  • R. Salomão
Forschung und Technik
  • 1 Downloads

Kurzfassung

Siliziumdoxid (SiO2) zählt zu den wichtigsten Eingangsmaterialien für die Lebensmittel- und Pharmaindustrie, Polymer-Verbundwerkstoffe sowie für die Tintenherstellung. In keramischen Werkstoffen werden feinkörnige Siliziumdioxidpartikel häufig als Pack- und Sinterhilfsmittel sowie zur Herstellung anderer Rohstoffe wie Mullit (3Al2O3·2SiO2) und Siliziumcarbid (SiC) eingesetzt. Da natürliches Siliziumdioxid einen relativ geringen Reinheitsgrad und inhomogene Eigenschaften aufweist, ist der Einsatz von synthetischem Siliziumdioxid in Feuerfestanwendungen und in der technischen Keramik notwendig. Diese Anwendungen erfordern eine verbesserte Kontrolle der Zusammensetzung und Mikrostruktur. Die Arbeit beschreibt einen systematischen Vergleich von synthetischem amorphem Siliziumdioxid (SAS) in vier verschiedenen Materialqualitäten. Die untersuchten SAS-Materialien wurden anhand verschiedener Verfahren formuliert (Natriumsilikat-Ausscheidungsprozess, SiCl4-Pyrolyse, Gewinnung aus Reishülsen und physikalische Abscheidung von gasförmigem Silizium). Unterschiede in der physikalisch-chemischen, thermischen und mikrostrukturellen Analyse jedes Stoffes stehen in Zusammenhang mit den jeweiligen Verfahrensweisen und Techniken des Herstellungsverfahrens. Die Arbeit bestätigte, dass die Synthesebedingungen einen bedeutenden Einfluss auf die Zusammensetzung und physikalischen Eigenschaften der getesteten SAS-Proben haben.

Stichwörter

Siliziumdioxid (SiO2amorph synthetisch Pyrolyse Ausscheidung Reishülse Mikrosiliziumdioxid 

Synthetic Amorphous Silica (SAS) Used in the Ceramics Industry

Abstract

Silica (SiO2) is one of the most important inputs for the food, pharmaceutics, polymer composite, and ink manufacturing industries. In ceramic materials, fine silica particles are widely used as a packing and sintering aid and to produce other raw materials like mullite (3Al2O3·2SiO2) and silicon carbide (SiC). As most of the silica sources found in nature have relatively low purity and nonhomogeneous properties, use of synthetic grades of silica is necessary in applications such as refractories and technical ceramics that require better control of product composition and microstructure. This paper describes a systematic comparison of four grades of synthetic amorphous silica (SAS) used in technical ceramics. The evaluated SAS materials were formulated by different methods (sodium silicate precipitation, SiCl4 pyrolysis, extraction from rice husks, and physical deposition of silicon vapour). Differences in the physico-chemical and thermal and microstructural characterization of each material are related to the principles and techniques involved in their manufacture. The study verified that synthesis conditions strongly influenced the composition and physical properties of the tested SAS samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Hahn, B.R., Johnson, E.L., Melaiye, A.M., Jiang, B., Kinsey, R.A.: (The Goodyear Tire & Rubber Company-US) US 8,440,750 B2, 14 May 2013Google Scholar
  2. [2]
    Schaal, S., Coran, A.Y., Mowdood, S.K.: (Pirelli Pneumatici S.P.A.-IT) WO 01/64782 A1, 07 September 2001Google Scholar
  3. [3]
    Menezes, R.R., Fagury-Neto E., Fernandes, M.C., Souto, P.M., Kiminami, R.H.G.A.: Porous mullite obtained using silica from rice husk and aluminum acetate (in Portuguese). Cerâmica 54 (2008) 245–252CrossRefGoogle Scholar
  4. [4]
    Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite: A review. J. Eur. Ceram. Soc. 28 (2008) 329–344CrossRefGoogle Scholar
  5. [5]
    Liu, N., Huo, K., McDowell, M.T., Zhao, J., Cui, Y.: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports 3 (2013) [1919] 1–7Google Scholar
  6. [6]
    Reinhardt, H., Abitzsch, G. (Henkel Kommanditgee-sellschaft Auf Aktien.-DE), 0 306 828 A3, 01 September 1988Google Scholar
  7. [7]
    Novotny, R., Hoff, A., Schuertz, J. (Henkel Kom-manditgeesellschaft Auf Aktien.-DE), WO 90/08733, 09 August 1990Google Scholar
  8. [8]
    Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z., Zhu, Y.: A recyclable method for production of pure silica from rice hull ash. Powder Techn. 217 (2012) 497–501CrossRefGoogle Scholar
  9. [9]
    Moerters, M., Jacobsen, H., Schumacher, K. (Degussa AG, Duesseldorf-DE), US Patent 7 541 014 B2, 02 June 2009Google Scholar
  10. [10]
    Iler, R.K.: The colloid chemistry of silica and silicate. Edit. Ithaca, New York (1979) 1–250Google Scholar
  11. [11]
    Real, C., Alcalá, M. D., Criado, J.M.: Preparation of silica from Rice Husks. J. Am. Ceram. Soc. 79 (1996) [8] 2012–2016CrossRefGoogle Scholar
  12. [12]
    Dastol, M., Tveit, H., Dingsoyr, E.O., Ronning, P., Harsaker, S. (Elkem A/S-NO), PI patent 9407106-3A, 19 July 1994Google Scholar
  13. [13]
    Rahaman, M.N.: Ceramic Processing and Sintering, 2th Ed. Marcel Dekker, New York (2003) 150Google Scholar
  14. [14]
    Plank, J., Schroefl, C., Gruber, M., Lesti, M., Sieber, R.: Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete: the importance of PCE compatibility with silica fume. J. Adv. Concrete Techn. 7 (2009) [1] 5–12CrossRefGoogle Scholar
  15. [15]
    Lowell, S., Shields, J.E.,: Powder Surface Area and Porosity, 3rd Ed. Chapman & Hall, London (1991) 56Google Scholar
  16. [16]
    International Union of Pure and Applied Chemistry IUPAC. Reporting data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57 (1985) [4] 603–19CrossRefGoogle Scholar
  17. [17]
    Quercia, G., Lazaro, A., Geus, J.W., Brouwers, H.J.H.: Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement and Concrete Comp. (2014) (in press)Google Scholar
  18. [18]
    Sun, L., Gong, K.: Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 40 (2001) 5861–5877CrossRefGoogle Scholar
  19. [19]
    Chandrasekhar, S., Pramada, P.N., Raghaven, P., Satyanarayana, K.G., Gupta, T.N.: Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete. J. Mater. Sci. Let. 21 (2002) 1245–1247CrossRefGoogle Scholar
  20. [20]
    Lim, H.M., Lee, J., Jeong, J.H., Oh, S.G., Lee, S.H.: Comparative study of various preparation methods of colloidal silica. Engineering 2 (2010) 998–1005CrossRefGoogle Scholar
  21. [21]
    Salomão, R., Souza, A.D.D., Fernandes, L., Arruda, C.C.: Advances in nanotechnology for refractories: When very small meets hot, heavy, and large. Am. Ceram. Soc. Bull. 92 (2013) [7] 22–28Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • L. Fernandes
    • 1
  • C. C. de Arruda
    • 1
  • A. D. V. Souza
    • 1
  • R. Salomão
    • 1
  1. 1.Institut für Werkstoffwissenschaften, Ingenieurschule Escola de Engenharia de São Carlos (EESC)Universität von São PauloSão CarlosBrazil

Personalised recommendations