Advertisement

Keramische Zeitschrift

, Volume 66, Issue 4, pp 221–225 | Cite as

Feuerfeste MgO-C Komposite mit zellularer Kohlenstoffstruktur, Teil 1: Experimentelle Charakterisierung

  • G. Falk
  • D. Petri
  • A. Jung
  • S. Diebels
Keramischer Rundblick

Zusammenfassung

Es wurden MgO-C-Feuerfeststeine mit einer zellularen Kohlenstoffstruktur hergestellt und experimentell untersucht. Zum Schutz des Kohlenstoffs vor Oxidation wurde dieser mit einer Beschichtung aus Yttrium stabilisiertem Zirkonoxid (YSZ) oder Siliciumcarbid (SiC) versehen und anschließend mit einer Magnesiumoxidsuspension infiltriert. Aus den experimentellen Ergebnissen wurden die finalen Risslängen und Rissdichten nach einem Thermoschock berechnet. Die hohe Porosität der Proben mit zellularer Kohlenstoffstruktur beeinflusst deren Eigenschaften und verringert ihre Thermoschockbeständigkeit im Vergleich zu einer Referenzprobe mit pechgebundenem Kohlenstoff.

Stichwörte

MgO-C Kohlenstoffschaum zellularer Kohlenstoff Thermoschock 

Refractory MgO-C Composites with a Cellular Carbon Structure, Part 1: Experimental Characterization

Abstract

Experimental results of cellular carbon foams coated with yttria-stabilized zirconia (YSZ) or silicon carbide (SiC) and infiltrated with magnesia suspension are presented. The calculated parameters for final crack length and final crack density allow conclusions about the thermal shock behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Krass, Y.R.: World production fo steel and magnesia refractories: State of the art and trends of development. Refractories and Industrial Ceramics 42 (2001) [11-12] 417–425CrossRefGoogle Scholar
  2. [2]
    Ceylantekin, R., Aksel, C.: Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation. Ceramics Internat. 38 (2012) 995–1002CrossRefGoogle Scholar
  3. [3]
    Yarushina, T.V., Akbashev, V.A., Plyukhin, V.A., et al.: Periclasecarbon composite refractories with new complex binder. Refractories and Industrial Ceramics 48 (2007) [3] 170–175CrossRefGoogle Scholar
  4. [4]
    Chen, C., Kennel, E.B., Stiller, A.H., et al.: Carbon foam derived from various precursors. Carbon 44 (2006) 1535–1543CrossRefGoogle Scholar
  5. [5]
    Li, S., Tian, Y., Zhong, Y., et al.: Formation mechanism of carbon foams derived from mesophase pitch. Carbon 49 (2011)CrossRefGoogle Scholar
  6. [6]
    Inagaki, M., Morishita, T., Kuno, A., et al.: Carbon foams prepared from polyimide using urethane foam template. Carbon 42 (2014) 497–502CrossRefGoogle Scholar
  7. [7]
    Lei, S., Guo, Q., Shi, J., et al.: Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 48 (2010) 2644–2673CrossRefGoogle Scholar
  8. [8]
    Chen, Y., Chen, B.-Z., Shi, X.-C., et al.: Preparation of pitch-based carbon foam using polyurethane foam template. Carbon 45 (2007) 2126–2139CrossRefGoogle Scholar
  9. [9]
    Li, X., Basso, M. C., Braghiroli, F. L., et al.: Tailoring the structure of cellular vitreous carbon foams. Carbon 50 (2012) 2026–2036Google Scholar
  10. [10]
    Sanchez-Coronado, J., Chung, D. D.L.: Thermomechanical behavior of a graphite foam. Carbon 41 (2003) 1175–1180CrossRefGoogle Scholar
  11. [11]
    Celzard, A., Tondi, G., Lacroix, D., et al.: Radiative properties of tannin-based, glasslike, carbon foams. Carbon 50 (2012) 4102–4113CrossRefGoogle Scholar
  12. [12]
    Gaies, D., Faber, K.T.: Thermal properties of pitch-derived graphite foam. Carbon 40 (2002) 1131–1150CrossRefGoogle Scholar
  13. [13]
    Latella, B.A., Liu, T.: The initiation and propagation of thermal shock cracks in graphite. Carbon 44 (2006) 3043–3048CrossRefGoogle Scholar
  14. [14]
    Qiu, H., Han, L., Liu, L.: Properties and microstructure of graphitised ZrC/C or SiC/C composites. Carbon 43 (2005) 1021–1025CrossRefGoogle Scholar
  15. [15]
    Bag, M., Adak, S., Sarkar, R.: Study on low carbon containing MgO-C refractory: Use of nano carbon. Ceramics International 38 (2012) 2339–2346CrossRefGoogle Scholar
  16. [16]
    Silveira, W.D., Falk, G.: Production of refractory materials with cellular matrix by colloidal processing. refractories WORLDFORUM 4 (2012) [1] (in print)Google Scholar
  17. [17]
    Silveira, W.D., Falk, G.: Reinforced cellular carbon matrix-MgO composites for high temperature appliactions: Microstructure aspects and colloidal processing. Adv. Eng. Mat. 13 (20111] 982–989CrossRefGoogle Scholar
  18. [18]
    Grasset-Bourdel, R., Alzina, A., Huger, M., et al.: Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesiaspinel refractories. J. Europ. Ceram. Soc. 32 (2012) 989–999CrossRefGoogle Scholar
  19. [19]
    Pabst, W., Gregorova, E., Ticha, G.: Elasticity of porous ceramics — A critical study of modulusporosity relations. J. Europ. Ceram. Soc. 26 (2006) 1085–1097CrossRefGoogle Scholar
  20. [20]
    Salvini, V.R., Pandolfelli, V.C., Bradt, R.C.: Extension of Hasselman’s thermal shock theory for crack/microstructure interactions in refractories. Ceramics Internat. 38 (2012) 5369–5375CrossRefGoogle Scholar
  21. [21]
    Jansen, H.: Bonding of MgO-C-bricks by catalytically activated resin. Stahl und Eisen 127 (2007) [5] 69–76Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Arbeitsgruppe Struktur- und FunktionskeramikUniversität des SaarlandesSaarbrückenDeutschland
  2. 2.Universität des SaarlandesSaarbrückenDeutschland

Personalised recommendations