Carbonates and Evaporites

, Volume 17, Issue 2, pp 121–133 | Cite as

Paleosubsidence and active subsidence due to evaporite dissolution in Spain

  • Francisco GuitérrezEmail author
  • Federico Ortí
  • Mateo Gutiérrez
  • Alfredo Pérez-González
  • Gerardo Benito
  • F. Javier Gracia
  • Juan José Durán


Evaporite formations crop out or are at shallow depth present in an extensive area of Spain. These soluble sediments occur in diverse geological domains and were deposited over a long time span, from the Triassic up to the present day. Broadly, the Mesozoic and Paleogene formations (Alpine cycle) are affected by compressional structures, wheras the Neogene (post-orogenic) sediments remain underformed. Subsidence caused by subsurface dissolution of evaporites (subjacent karst) takes place in three main types of stratigraphic settings: a) subsidence affecting evaporite-bearing Mesozoic and Tertiary successions (interstratal karst); b) subsidence in Quaternary alluvial deposits related to the exorheic evolution of present-day fluvial systems (alluvial or mantled karst); and c) subsidence in exposed evaporites (uncovered karst). These types may be represented by paleosubsidence phenomena (synsedimentary and/or postsedimentary) recognizable in the stratigraphic record, or by equivalent, currently active or modern examples which have a surface expression. Interstratal karstification of Mesozoic marine evaporites, and the consequent subsidence of overlying strata, is revealed by stratiform collapse breccias and wedge outs of the evaporites grading into unsoluble residues. In several Tertiary basins, the sediments overlying evaporites locally show synsedimentary and/or postsedimentary subsidence structures. Dissolution-induced subsidence coeval with sedimentation is accompanied by local thicknening of strata in basin-like structures with convergent dips and cumulative wedge-out systems. This sinking process controls the generation of depositional environments and lithofacies distribution. Postsedimentary subsidence produces a great variety of gravitational deformations in Tertiary supra-evaporitic units, including both ductile and brittle structures (flexures, synforms, fractures, collapse, and brecciation). Quaternary fluvial terrace deposits overlying evaporites show anomalous thickenings (>150m) caused by a dissolution-induced subsidence process in the alluvial plain, which is balanced by alluvial aggradation. The complex evolution (in time and space) of paleosubsidence leads to intricate and chaotic structures in the alluvium, which may be erroneously interpreted as pure tectonic deformations. The current subsidence and generation of sinkholes due to suballuvial karstification constitutes a geohazard which affects large, densely populated areas, and thus endangers human safety and poses limitations on development. An outstanding example can be seen in Calatayud, an important historical city where subsidence has severely damaged highly valuable monuments. Subsidence resulting from the underground karstification of evaporites has caused or influenced the generation of some important modern lacustrine basins, such as Gallocanta, Fuente de Piedra, and Banyoles Lakes. The sudden formation of sinkholes due to collapse of cave roofs is fairly frequent in some evaporite outcrops. Very harmful and spectacular subsidence activity is currently occurring in the Cardona salt diapir, where subsidence has been dramatically exacerbated by mining practices.


Evaporite Betic Cordillera Ebro Basin Collapse Sinkhole Triassic Evaporite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARENAS, C., GUTIÉRREZ, F., OSÁCAR, C., and SANCHO, C., 2000, Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain:Sedimentology, v. 47, p. 883–909.CrossRefGoogle Scholar
  2. AYALA, F.J., RODRÍGUEZ, J.M., DEL VAL, J., DURÁN, J.J., PRIETO, C., and RUBIO, J., 1986, Memoria del Mapa del Karst de España. IGME, Madrid, 68 p.Google Scholar
  3. BENITO, G., PÉREZ DEL CAMPO, P., GUTIÉRREZ-ELORZA, M., and SANCHO, C., 1995, Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain:Environmental Geology, v. 25, p. 156–164.CrossRefGoogle Scholar
  4. BENITO, G., PÉREZ-GONZÁLEZ, A., GUTIÉRREZ, F., and MACHADO, M.J., 1998, River response to Quaternary subsidence due to evaporite solution (Gállego River, Ebro Basin, Spain):Geomorphology, v. 22, p. 243–263.CrossRefGoogle Scholar
  5. BENITO, G., GUTIÉRREZ, F., PÉREZ-GONZÁLEZ, A., and MACHADO, M., 2000, Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain):Geomorphology, v. 33, p. 209–224.CrossRefGoogle Scholar
  6. BROSCHE, K.U., 1971, Neue beobachtungen zu vorzeitlichen periglazialerscheinungen im Ebrobechen:Zeitschrift für Geomorphologie NF, v. 15, p. 107–114.Google Scholar
  7. BRUSÍ, D., MAROTO, J., and VILA I PORTELLA, X., 1992, L’estany de Banyoles.In: Ll. Pallí and D. Brusí, eds., El medi natural a les terres gironines, p. 117–133.Google Scholar
  8. CALAFORRA, J.M. and PULIDO-BOSCH, A., 1996, Some examples of gypsum karst and the more important gypsum caves in Spain.In: A. Klimchouk, D. Lowe, A. Cooper, and U. Sauro, eds., Gypsum karst of the world:International Journal of Speleology, v. 25, nos. 3–4, p. 225–237.CrossRefGoogle Scholar
  9. CALAFORRA, J.M. and PULIDO-BOSCH, A., 1999, Gypsum karst features as evidence of diapiric processes in the Betic Cordilera, Southern Spain:Geomorphology, v. 29, p. 251–264.CrossRefGoogle Scholar
  10. CALVO, J.P., ALCALÁ, L., ALONSO-ZARZA, A.M., VAN DAM J., and GUTIÉRREZ SANTOLALLA, F., 1999, Estratigrafia y estructura del área de Los Mansuetos (Cuenca de Teruel). Precisiones para la definición del estratotipo del Turoliense:Geogaceta, v. 25, p. 55–58.Google Scholar
  11. CANALS, M., GOT, H., JULIÁ, R., and SERRA, J., 1990, Solution-collapse depressions and suspensates in the limnocrenic lake of Banyoles (NE Spain):Earth Surface Processes and Landforms, v. 15, p. 243–254.CrossRefGoogle Scholar
  12. CARDONA, F., 1990, La Vall salina de Cardona (Bages-Barcelona). Característiques i evolució d’un carst en sal:Exploracions, v. 14, p. 7–34.Google Scholar
  13. DE VICENTE, G., GINER, J.L., MUÑOZ-MARTÍN, A., GONZÁLEZ-CASADO, J.M., and LINDO, R., 1996, Determination of present-day stress tensor and neotectonic interval in the Spainsh Central System and Madrid Basin, central Spain:Tectonophysics, v. 266, p. 405–424.CrossRefGoogle Scholar
  14. DURÁN, J.J., 1984, Evolución geomorfológica del Cañón del río Guadalhorce en el Trias de Antequera (Archidona, Málaga):Cuadernos de Investigación Geográfica, v. 10, nos. 1–2, p. 43–54.CrossRefGoogle Scholar
  15. DURÁN, J.J. and VAL, J. DEL, 1984, El karst yesífero en España: condicionantes geológicos y problemática territorial, ambientaly geotécnica:I Congreso Español de Geología, v. 1, p. 623–634.Google Scholar
  16. ERASO, A., 1959, Karst en yeso del diapiro de Estella:Munibe, v. 4, p. 201–230.Google Scholar
  17. FERNÁNDEZ-RUBIO, R., ERASO, A., ORTEGA, M., ARANA, R., and ROJAS, E., 1975, Estudio de la Sima Termal de las Fumarolas (Montevives, Granada, España):Ann. Spéléol., v. 30, p. 287–302.Google Scholar
  18. GARAY, P., 1991, El riesgo de colapso kárstico y su incidencia en la Comunidad Valenciana:Lapiaz, v. 20, p. 25–30.Google Scholar
  19. GINER, J.L. and DE VICENTE, G., 1995, Crisis tectónicas recientes en el sector central de la Cuenca de Madrid.In: T. Aleixandre and A. Pérez-González, eds., Reconstrucción de paleoambientes y cambios climáticos durante el Cuaternario. IX Reunión Nacional sobre Cuaternario. Madrid, p. 141–162.Google Scholar
  20. GRACIA, F.J., GUTIÉRREZ, F., and GUTIÉRREZ, M., 1999, Evolución Geomorfológica del Polje de Gallocanta:Revista de la Sociedad Geológica de España, v. 12, nos. 3–4, p. 351–368.Google Scholar
  21. GUTIÉRREZ, F., 1996, Gypsum karstification induced subsidence: Effects on alluvial systems and derived geohazards (Calatayud Graben, Iberian Range, Spain):Geomorphology, v. 16, p. 277–293.CrossRefGoogle Scholar
  22. GUTIÉRREZ, F., 1998, Fenómenos de subsidencia por disolución de formaciones evaporíticas en las fosas neógenas de Teruel y Calatayud (Cordillera Ibérica). Ph. D. Thesis. University of Zaragoza, 569 p. Unpublished.Google Scholar
  23. GUTIÉRREZ, F. and ARAUZO, T., 1997, Subsidencia kárstica sinsedimentaria en un sistema aluvial efimero: El Barranco de Torrecilla (Depresión del Ebro, Zaragoza):Cuadérnos de Geología Ibérica, v. 22, p. 349–372.Google Scholar
  24. GUTIÉRREZ, F., COOPER, A.H., and GARCÍA-HERMOSO, F., 2000, Spatial assessment, mitigation and prevention of evaporite dissolution subsidence damage in the historical city of Calatayud, Spain. Proceedings of the Sixth International Symposium on Land Subsidence. Ravenna. IAHS, In press.Google Scholar
  25. GUTIÉRREZ, M. and GUTIÉRREZ, F., 1998, Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain):Geoderma, v. 87, nos. 1–2, p. 1–29.Google Scholar
  26. JOHNSON, G., 1960, Cryoturbation at Zaragoza, Northern Spain:Zeistchrift für Geomorphologie NF, v. 4, p. 74–80.Google Scholar
  27. LINARES, L. and RENDÓN, M., 1999, La laguna de Fuente de Piedra (Málaga), un área endorreica de interés ecológico ligada al karst yesífero salino.In: J.J. Durán and J. López-Martínez, eds., El Karst en España. Sociedad Española de Geomorfología, Monografía, v. 4, 165–172.Google Scholar
  28. MACAU, F. and RIBA, O., 1962, Situación, características y extensión de los terrenos yesíferos en España: I Coloquio Internacional sobre las Obras Públicas en los terrenos yesíferos. Madrid, v. 5, p. 157–184.Google Scholar
  29. MATHER, A.E., HARVEY, A.M., and BRENCHLEY, P.J., 1991, Halokinetic deformation of Quaternary river terraces in the Sorbas Basin, South-East Spain:Zeistchrift Geomorph. N.F., Suppl.-Bd., v. 82, p. 87–97.Google Scholar
  30. MOISSENET, E., 1989, L’Age et les deformations des terrases alluviales du Fossé de Teruel. II Reunión del Cuaternario Ibérico. Madrid. I.T.G.E., p. 267–279.Google Scholar
  31. ORTÍ, F., 1987, Aspectos sedimentológicos de las evaporitas del Triásico y del Liásico inferior en el E de la Península Ibérica:Cuadernos de Geología Ibérica, v. 11, p. 837–858.Google Scholar
  32. ORTÍ, F., 1988, Sedimentación evaporitica continental durante el Terciario de la Península Ibérica: aspectos generales: II Congreso Geológico de España. Simposios, Granada, p. 509–518.Google Scholar
  33. ORTÍ, F., 1989, Las rocas evaporíticas en España.In: J.J. Durán and J. López-Martínez, eds., El Karst en España. Sociedad Española de Geomorfología, Monografía, v. 4, p. 55–64.Google Scholar
  34. ORTÍ, F., 1997, Evaporitic Sedimentation in the South Pyrenean Foredeeps and the Ebro Basin during the Tertiary: A General View’.In: G. Busson and B. Schreibber, eds., Sedimentary Deposition in Rift and Foreland Basins in France and Spain. Columbia University Press, New York, p. 319–334.Google Scholar
  35. ORTÍ, F., 2000, Unidades glauberíticas del Terciario Ibérico: nuevas aportaciones:Rev. Soc. Geol. España, v. 13, no. 2, p. 65–87.Google Scholar
  36. ORTÍ, F. and ROSELL, L., 2000, Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain):Sedimentology, v. 47, no. 3, p. 665–686.CrossRefGoogle Scholar
  37. PÉREZ-GONZÁLEZ, A., 1971, Estudio de los procesos de hundimiento en el valle del río Jarama y sus terrazas (nota preliminar):Estudios Geológicos, v. 27, p. 317–324.Google Scholar
  38. PINILLA, L., PÉREZ-GONZÁLEZ, A., SOPEÑA, A., and PARÉS, J.M., 1995, Fenómenos de hundimientos sinsedimentarios en los depósitos cuaternarios del río Tajo en la Cuenca de Madrid (Almoguera-Fuentidueña de Tajo).In: T. Aleixandre and A. Pérez-González, eds., Reconstrucción de paleoambientes y cambios climáticos durante el Cuaternario. IX Reunión Nacional sobre el Cuaternario. Centro de Ciencias Medioambientales, CSIC, Madrid, Monografía, v. 3, p. 125–140.Google Scholar
  39. PLAYÀ, E., ORTÍ, F., and ROSELL, L., 2000, Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence:Sedimentary Geology, v. 133, p. 135–166.CrossRefGoogle Scholar
  40. PULIDO-BOSCH, A., 1986, Le karst les gypses de Sorbas (Almería). Aspects morphologiques et hydrogéologiques:Karstologia Mémoires, v. 1, p. 27–35.Google Scholar
  41. RODRÍGUEZ-ARANDA, J.P. and CALVO, J.P., 1997, Desarrollo de paleokarstificación en facies yesíferas del Mioceno de la Cuenca de Madrid. Implicaciones en el análisis evolutivo de sucesiones lacustres evaporíticas:Boletín Geológico y Minero, v. 108, nos. 4-5, p. 377–392.Google Scholar
  42. RODRÍGUEZ-ESTRELLA, T., 1985, Neotectónica relacionada con las estructuras diapíricas en el sureste de la Península Ibérica:Tecniterrae, v. 51, p. 14–30.Google Scholar
  43. RODRÍGUEZ-VIDAL, J., GRACIA, F.J., and GILES, F., 1993, Short-term diapiric deformations in Pleistocene deposits (SW Spain):Bull. INQUA N.C., v. 16, p. 13–15.Google Scholar
  44. ROS, X., GALOBART, A., and MAROTO, J., 1996, El plioquaternari lacustre: les calcàries i els reompliments d’Incarcal (Crespià).In: J. Maroto and Ll. Pallí, eds., Geologia de la conca lacustre de Banyoles-Besalú:Quaderns Centre d’Estudis Comarcals de Banyoles, v. 17, p. 41–51.Google Scholar
  45. SÁNCHEZ, J.A., COLOMA, P., and PÉREZ, A., 1999, Sedimentary processes related to the groundwater flows from the Mesozoic Carbonate Aquifer of the Iberian Chain in the Tertiary Ebro Basin, northeast Spain:Sedimentary Geology, v. 129, p. 201–213.CrossRefGoogle Scholar
  46. SANZ-RUBIO, E., HOYOS, M., CAÑAVERAS, J.C., SÁNCHEZ-MORAL, S., and CALVO, J.P., 1996, Caracterización sedimentológica de los sistemas fluviolacustres y tobáceos del Mioceno Superior-Plioceno de la Cuenca de Calatayud (Zaragoza):Geogaceta, v. 20, no. 2, p. 277–280.Google Scholar
  47. SOLÀ, J., MONTANER, J., and BERÀSTEGUI, X., 1996, Els dipòsits alluvials quaternaris entre Sant Jaume de Llierca i Banyoles.In: J. Maroto and Ll. Pallí, eds., Geologia de la conca lacustre de Banyoles-Besalú:Quaderns Centre d’Estudis Comarcals de Banyoles, v. 17, p. 61–69.Google Scholar
  48. SORIANO, M.A. and SIMÓN, J.L., 1995, Alluvial dolines in the central Ebro basin, Spain: a spatial and developmental hazard analysis:Geomorphology, v. 11, p. 295–309.CrossRefGoogle Scholar
  49. UTRILLA, R., PIERRE, C., ORTÍ, F., and PUEYO, J.J., 1992, Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain:Chemical Geology (Isotope Geoscience Section), v. 102, p. 229–244.Google Scholar
  50. VAN DE POEL, H.M., ROEP, T.B., and PEPPING, N., 1984, A remarkable limestone breccia and other features of the miopliocene transition in the Agua Amarga Basin (SE Spain):Géologie Méditerraneénne, v. 11, no. 3, p. 265–276.CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Francisco Guitérrez
    • 1
    Email author
  • Federico Ortí
    • 2
  • Mateo Gutiérrez
    • 1
  • Alfredo Pérez-González
    • 3
  • Gerardo Benito
    • 4
    • 5
  • F. Javier Gracia
    • 6
  • Juan José Durán
    • 7
  1. 1.Geodinámica, Edificio GeológicasUniversity of ZaragozaZaragozaSpain
  2. 2.Departmento de Petrología, Geoquímica y Prospección Geológica, Facultad de Geología, Universidad de BarcelonaUniversity of BarcelonaBarcelonaSpain
  3. 3.Departamendo de Geodinámica, Facultad de GeológicasUniversity Complutense of MadridMadridSpain
  4. 4.Centro de Estudios MedioambientalesCSICMadridSpain
  5. 5.Centro de Ciencias Medioambientales (C.S.I.C.)MadridSpain
  6. 6.Facultad de Ciencias del MarUniversity of CádizPuerto Real, CádizSpain
  7. 7.Instituto Tecnológico y Geominero de España, MadridMadridSpain

Personalised recommendations