Carbonates and Evaporites

, Volume 15, Issue 2, pp 149–161 | Cite as

Calcite cement successions in Middle Devonian (Givetian) carbonate mud buildups of the southern Ahnet basin (Algerian Sahara)

  • Bernd Kaufmann
  • Jobst Wendt


In the Ahnet Basin of southern Algeria, carbonate mud buildups were established in a deeper subtidal environment during Givetian times. The primary cavity system (irregular cavities, stromatactis) of these buildups exhibits a calcite cement succession precipitated in marine-phreatic to deep-burial environments.

Cementation started in the marine environment. Cloudy, radiaxial-fibrous calcites (RFCs) of originally high Mg-calcite composition coat the walls of the cavities and occupy 50-80% of the pore space. The carbon-and oxygen-isotopic signature of these cements corresponds to that of co-occurring, nonluminescent brachiopod shells and to that of coeval RFCs from the Mader Basin of Morocco. Average values of δ18O=−2.6 (±0.4)%. PDB and δ13C=+2.6(±0.4)%. PDB are assumed to represent the Givetian stable-isotopic seawater signature of the Northwest-African carbonate province. The exceptional high δ18O values, compared to Middle Devonian data of North America, are interpreted to re from the mid-latitudinal (about 40°S), colder-water settings of the Northwest-African carbonate buildups. The87Sr/86Sr ratios of RFCs (0.70802±17) and nonluminescent brachiopod shells (0.70780±3) fit well into established Sr-isotopic curves of Devonian seawater.

Cementation in the shallow-burial realm is characterized by a typical non-bright-dull cathodoluminescence sequence of nonluminescent scalenohedral cements (dog-tooth cements) with bright-luminescent outer margins overgrown by slight-ferroan, moderate-luminescent cements. Meteoric influence on this cement sequence can be excluded.

Deep-burial cementation following a rather long period of non-cementation is represented by strong-ferroan, dull-luminescent blocky cements. Alternatively to pressure solution, outgassing of CO2 by decreasing pore-fluid pressure caused by Variscan fracturing can be considered as carbonate source for ferroan calcite precipitation in the remaining pore space. Strong δ18O depletion (−10.6 to −14.8%. PDB) of these cements point to the influence of hydrothermal fluids rather than to a pure depth-related temperature control. δ13C values show a trend from a nearly marine signature to more negative values (up to −9.0%. PDB) which suggests the input of methane by hydrocarbon migration during Variscan compression. More radiogenic87Sr/86Sr ratios (0.70826 to 0.71684) with respect to the marine composition are probably caused by the input of radiogenic strontium from K-feldspar dissolution and/or clay recrystallization from adjacent siliciclastic units.


Calcite Middle Devonian Calcite Cement Cement Succession Carbonate Buildup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARNABY, R.J. and RIMSTIDT, J.D., 1989, Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites:Geological Society of America Bulletin, v. 101, p. 795–804.CrossRefGoogle Scholar
  2. BATHURST, R.G.C., 1959, The cavernous structure of some Mississippian Stromatactis reefs in Lancashire, England:Journal of Geology, v. 67, p. 506–521.CrossRefGoogle Scholar
  3. BATHURST, R.G.C., 1998, The world’s most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara) — Discussion and Reply:Journal of Sedimentary Research, v. 68, p. 1051–1052.CrossRefGoogle Scholar
  4. BELKA, Z., 1994, Dewonskie Budowle Weglanowe (Carbonate Buildups) Sahary Srodkowei I Ich Zwiazek Z Podmorskimi Zrodlami Termalnymi (Carbonate mud buildups in the Devonian of the Central Sahara: evidences for submarine hydrothermal venting):Przeglad Geologiczny, v. 5, p. 341–346.Google Scholar
  5. BOOTE, D.R.D., CLARK-LOWES, D.D., and TRAUT, M.W., 1998, Palaeozoic petroleum systems of North Africa,in MacGregor, D.S., Moody, R.T.J., and Clark-Lowes, D.D., eds., Petroleum Geology of North Africa: Geological Society London, Special Publication, v. 132, p. 7–68.Google Scholar
  6. BRAND, U., 1989, Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of brachiopods:Palaeogeography, Palaeoclimatology, Palaeoecology (Global Planetary Change Section), v. 75, p. 311–329.CrossRefGoogle Scholar
  7. BRUCKSCHEN, P. and RICHTER, D.K., 1994, Zementstratigraphische Grundmuster in marinen Karbonatablagerungen des Phanerozoikums — ein Abbild der normalen Beckenentwicklung:Zentralblatt für Geologie und Paläontologie, Teil I, v. 1993, p. 959–972.Google Scholar
  8. CARPENTER, S.J. and LOHMANN, K.C., 1989, δ18O und δ13C variations in late Devonian marine cements from the Golden Spike and Nevis Reefs, Alberta, Canada:Journal of Sedimentary Petrology, v. 59, p. 792–814.CrossRefGoogle Scholar
  9. CHOQUETTE, P.W. and JAMES, N.P., 1987, Diagenesis in limestones — 3, the deep burial environment:Geoscience Canada, v. 14, p. 3–35.Google Scholar
  10. CONRAD, J., 1984, Les séries carbonifères du Sahara central algérien. Stratigraphie, sédimentation, évolution structurale [unpublished Thèse de Doctorat d’Etat és-Sciences Naturelles]: Université de Droit, d’Economie et des Sciences d’Aix Marseille, Faculté des Sciences et Techniques de St. Jérome, 370 p.Google Scholar
  11. DENISON, R.E., KOEPNICK, R.B., BURKE, W.H., HETHERINGTON, E.A. and FLETCHER, A., 1997, Construction of the Silurian and Devonian seawater87Sr/86Sr curve:Chemical Geology, v. 140, p. 109–121.CrossRefGoogle Scholar
  12. DICKSON, J.A.D., 1966, Carbonate identification and genesis as revealed by staining:Journal of Sedimentary Petrology, v. 36, p. 491–505.Google Scholar
  13. DIENER, A., EBNETH, S., VEIZER, J., and BUHL, D., 1996, Strontium isotope stratigraphy of the Middle Devonian: Brachiopods and conodonts:Geochimica Cosmochimica Acta, v. 60, p. 639–652.CrossRefGoogle Scholar
  14. EPSTEIN, A.G., EPSTEIN, J.B., and HARRIS, L.D., 1977, Conodont color alteration-an index to organic metamorphism: U.S. Geological Survey Professional Paper, v. 995, p. 1–27.Google Scholar
  15. FINKEL, E.A. and WILKINSON, B.H., 1990, Stylolitization as source of cement in Mississippian Salem Limestone, west-central Indiana:American Association of Petroleum Geologists Bulletin, v. 74, p. 174–186.Google Scholar
  16. FRIEDMAN, G.M., 1959, Identification of carbonate-minerals by staining methods:Journal of Sedimentary Petrology, v. 29, p. 87–97.Google Scholar
  17. FRIEDMAN, I. and O’NEIL, J.R., 1977, Compilation of stable isotope fractionation factors of geochemical interest: U.S. Geological Survey Professional Paper, v. 440-K, p. 1–12.Google Scholar
  18. GIESKES, J.M., JOHNSTON, K., BOEHM, M. and NOHARA, M., 1984, Interstitial water studies, deep sea drilling projekt, Leg 75:Initial Reports of the Deep Sea Drilling Project, v. 75, p. 959–963.Google Scholar
  19. GIVEN, R.K. and WILKINSON, B.H., 1985, Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates:Journal of Sedimentary Petrology, v. 55, p. 109–119.Google Scholar
  20. GOLONKA, J., ROSS, M.I., and SCOTESE, C.R., 1994, Phanerozoic paleogeographic and paleoclimatic modelling maps,in Embry, A., Beauchamp, B., and Glass, D.J., eds., Pangea: Global environments and resources:Canadian Society of Petroleum Geologists Memoir, v. 17, p. 1–47.Google Scholar
  21. HEEGER, J.E., 1913, Ueber die mikrochemische Untersuchung fein verteilter Carbonate im Gesteinsschliff:Centralblatt für Mineralogie, v. 1913, p. 44–51.Google Scholar
  22. HURLEY, N.F. and LOHMANN, K.C., 1989, Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning Basin, Western Australia:Journal of Sedimentary Petrology, v. 59, p. 127–146.Google Scholar
  23. IRWIN, H., CURTIS, C., and COLEMAN, M., 1977, Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments:Nature, v. 269, p. 209–213.CrossRefGoogle Scholar
  24. KAUFMANN, B., 1997, Diagenesis of Middle Devonian carbonate mounds of the Mader Basin (eastern Anti-Atlas, Morocco):Journal of Sedimentary Research, v. A67, p. 945–956.Google Scholar
  25. KAUFMANN, B., 1998, Facies, stratigraphy and diagenesis of Middle Devonian reef-and mud-mounds in the Mader (eastern Anti-Atlas, Morocco):Acta Geologica Polonica, v. 48, p. 43–106.Google Scholar
  26. KAUFMANN, B., REINHOLD, C., and SCHAUER, M., 1999, Concentric-zoned calcite cements of Middle Devonian carbonate mounds of the Mader Basin (eastern Anti-Atlas, Morocco)-a combined cathodoluminescence and microprobe study:Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 214, p. 95–110.CrossRefGoogle Scholar
  27. KENDALL, A.C., 1985, Radiaxial fibrous calcite: a Reappraisal, in Schneidermann, N. and Harris, P.M., eds., Carbonate cements: Society of Economic Paleontologists and Mineralogists, Special Publications, v. 36, p. 59–77.Google Scholar
  28. KENDALL, A.C. and TUCKER, M.E., 1973, Radiaxial-fibrous calcite: a replacement after acicular carbonate:Sedimentology, v. 20, p. 365–389.CrossRefGoogle Scholar
  29. KERANS, C., HURLEY, N.F., and PLAYFORD, P.E., 1986, Marine Diagenesis in Devonian reef complexes of the Canning Basin, Western Australia,in Schroeder, J.H. and Purser, B.H., eds., Reef Diagenesis. Springer-Verlag, Berlin, p. 357–380.CrossRefGoogle Scholar
  30. LAVOIE, D., 1993, Early Devonian marine isotopic signatures: brachiopods from the upper Gaspé limestones, Gaspé Peninsula, Québec, Canada:Journal of Sedimentary Petrology, v. 63, p. 620–627.Google Scholar
  31. LAVOIE, D. and BOURQUE, P.-A., 1993, Marine, meteoric and burial diagenesis of an Early Silurian carbonate platform, Québec Appalachians, Canada:Journal of Sedimentary Petrology, v. 63, p. 233–247.Google Scholar
  32. MACHEL, H.G., 1990, Submarine Frühdiagenese, Spaltenbildungen und prätektonische Spätdiagenese des Briloner Riffs:Geologisches Jahrbuch, Reihe D, v. 95, p. 85–137.Google Scholar
  33. MEYERS, W.J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico:Journal of Sedimentary Petrology, v. 44, p. 837–861.Google Scholar
  34. MEYERS, W.J., 1978, Carbonate cements: their regional distribution and interpretation in Mississippian limestones of south western New Mexico:Sedimentology, v. 25, p. 371–400.CrossRefGoogle Scholar
  35. MUCHEZ, P., VIAENE, W., and MARSHALL, J.D., 1991, Origin of shallow burial cements in the late Visean of the Campine Basin, Belgium:Sedimentary Geology, v. 73, p. 257–271.CrossRefGoogle Scholar
  36. PISCIOTTO, K.A. and MAHONEY, J.J., 1981, Isotopic survey of diagenetic carbonates, Deep Sea Drilling project Leg 63:Initial Reports of the Deep Sea Drilling Project, v. 63, p. 595–609.Google Scholar
  37. POPP, B.N., ANDERSON, T.F., and SANDBERG, P.A., 1986, Textural, elemental, and isotopic variations among constituents in Middle Devonian limestones, North America:Journal of Sedimentary Petrology, v. 56, p. 715–727.Google Scholar
  38. PREZBINDOWSKI, D.R., 1985, Burial cementation — is it important? A case study, stuart City Trend, South Central Texas,in Schneidermann, N. and Harris, P.M., eds., Carbonate cements: Society of Economic Paleontologists and Mineralogists, Special Publications, v. 36, p. 241–264.Google Scholar
  39. REINHOLD, C., 1999, Dog-tooth cements: indicators of different diagenetic environments:Zentralblatt für Geologie und Paläontologie, Teil I, v. 1997, p. 1221–1235.Google Scholar
  40. SCHNEIDER, W., 1977, Diagenese devonischer Karbonatkomplexe Mitteleuropas:Geologisches Jahrbuch, Serie D, v. 21, p. 1–107.Google Scholar
  41. STUEBER, A.M., PUSHKAR, P., and HETHERINGTON, E.A., 1984, A strontium isotopic study of smackover brines and associated solids, southern Arkansas:Geochimica et Cosmochimica Acta, v. 48, p. 1637–1649.CrossRefGoogle Scholar
  42. WADLEIGH, M.A. and VEIZER, J., 1992,18O/16O and13C/12C in lower Paleozoic articulate brachiopods: implications for the isotopic composition of seawater:Geochimica et Cosmochimica Acta, v. 56, p. 431–443.CrossRefGoogle Scholar
  43. WALLACE, M.W., KERANS, C., PLAYFORD, P.E., and MCMANUS, A., 1991, Burial diagenesis in the Upper Devonian reef complexes of the Geikie Gorge region, Canning Basin, Western Australia:American Association of Petroleum Geologists Bulletin, v. 75, p. 1018–1038.Google Scholar
  44. WALLS, R.A., MOUNTJOY, E.W., and FRITZ, P., 1979, Isotopic composition and diagenetic history of carbonate cements in Devonian Golden Spike reef, Alberta, Canada:Geological Society of America Bulletin, v. 90, p. 963–982.CrossRefGoogle Scholar
  45. WENDT, J., 1991, Depositional and Structural Evolution of the Middle and Late Devonian on the Northwestern Margin of the Sahara Craton (Morocco, Algeria, Libya),in Salem, M.J., Sbeta, A.M., and Bakbak, M.R., eds., The Geology of Libya, v. 6. Elsevier, Amsterdam, p. 2195–2210.Google Scholar
  46. WENDT, J., BELKA, Z., KAUFMANN, B., KOSTREWA, R., and HAYER, J., 1997, The world’s most spectacular carbonate mud mounds (Middle Devonian, Algerian Sahara):Journal of Sedimentary Research, v. B67, p. 424–436.Google Scholar
  47. WENDT, J., BELKA, Z., and MOUSSINE POUCHKINE, A., 1993, New architectures of deep-water carbonate buildups: Evolution of mud mounds into mud ridges (Middle Devonian, Algerian Sahara):Geology, v. 21, p. 723–726.CrossRefGoogle Scholar
  48. WENDT, J. and KAUFMANN, B., 1998, Mud buildups on a Middle Devonian carbonate ramp (Algerian Sahara):Geological Society London, Special Publication, v. 149, p. 397–415.CrossRefGoogle Scholar
  49. WILSON, P.A. and DICKSON, J.A.D., 1996, Radiaxial calcite: Alteration product of and petrographic proxy for magnesian calcite marine cement:Geology, v. 24, p. 945–948.CrossRefGoogle Scholar
  50. WONG, P.K. and OLDERSHAW, A., 1981, Burial cementation in the Devonian, Kaybob Reef complex, Alberta, Canada:Journal of Sedimentary Petrology, v. 51, p. 507–520.Google Scholar
  51. ZEEH, S., BECHSTÄDT, T., MCKENZIE, J., and RICHTER, D.K., 1995, Diagenetic evolution of the Carnian Wetterstein platforms of the Eastern Alps:Sedimentology, v. 42, p. 199–222.CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • Bernd Kaufmann
    • 1
  • Jobst Wendt
    • 1
  1. 1.Geologisch-Paläontologisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations