Advertisement

Carbonates and Evaporites

, Volume 8, Issue 2, pp 181–190 | Cite as

Carbonate storm deposits (Tempestites) of Middle to Upper Cambrian age in the Helan Mountains, northwest China

  • Liang Chuanmao
  • Gerald M. Friedman
  • Zheng Zhaochang
Article

Abstract

Storm-influenced shelf carbonate deposits are well developed in the Middle to Upper Cambrian of the Helan Mountains, northwest China. The storm-influenced sequences can be divided into four major kinds of facies based on their lithologic and petrographic characteristics. They are: 1) supra-intertidal stromatolite-tempestite association, 2) barrier skeletal-oolitic tempestite association, 3) upper shelf proximal micrite-tempestite association, and 4) lower or distal shelf shale-micrite tempestite association. Lithofacies changes and tempestite relationships indicate that the shelf deepened to the south. Vertical frequencies in the sequence of storm deposits display cyclic changes on different orders. These cycles and cyclic orders reflect distinct episodic storm events.

Keywords

Cambrian Stromatolite Micrite Grainstone Ooids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIGNER, T., 1982, Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-Germany), in Einsele, G., and Seilacher, A., eds., Cyclic and event stratification. Springer-Verlag, Berlin-Heidelberg-New York, p. 181–198.Google Scholar
  2. AIGNER, T., 1985, Storm depositional systems; Dynamic stratigraphy in modern and ancient shallow-marine sequences, Lecture Notes in Earth Sciences, Friedman, G.M., Neugebauer, J., and Seilacher, A., eds., Springer-Verlag, 174p.Google Scholar
  3. —, and BACHMANN, G. H., 1992, Sequence-stratigraphic framework of the German Triassic:Sedimentary Geology, v.80, p.115–135.CrossRefGoogle Scholar
  4. BARRON, E.J., 1989, Severe storms during Earth history:Geol. Soc. America. Bull., v.101, p.601–612.CrossRefGoogle Scholar
  5. BARRY, R.G., and CHORIEY, R.J., 1988, Atmosphere, weather and climate, Chapman and Hall, New York, 448p.Google Scholar
  6. COOK, H.E., and TAYLOR, M.E., 1977, Comparison of continental slope and shelf environments in the Upper Cambrian and lowest Ordovician of Nevada:Spec. Publ. Soc. Econ. Paleont. Miner. Spec. Publ., No.25, p.51–81.Google Scholar
  7. DOTT, R.H. JR., and BOURGEOIS, J., 1982, Hummocky stratification: Significance of its variable bedding sequences:Geol. Soc. America. Bull., v. 93, p, 663–680.CrossRefGoogle Scholar
  8. DUKLE, W. L., 1985, Hummocky cross-stratification, tropical hurricanes, and intense winter storms:Sedimentology, v.32, p.167–194.CrossRefGoogle Scholar
  9. EINSELE, G., RICKEN, W., and SEILACHER A, (eds), 1991, Cycles and events in stratigraphy: Springer-Verlag, New York, 995p.Google Scholar
  10. EINSELE, G., and SEILACHER, A., 1982, Cyclic and event stratification: Springer-Verlag, New York, 536p.CrossRefGoogle Scholar
  11. FRIEDMAN, G.M. and RADKE, B., 1979, Evidence for sabkha overprint and conditions of intermittent emergence in Cambrian-Ordovician carbonates of Northeastern North America and Queensland, Australia:Northeastern Geology, v.1, p.18–42.Google Scholar
  12. FRIEDMAN, G. M., SANDERS, J. E., and KOPASKAMERKEL, D.C., 1992, Principles of sedimentary deposits—stratigraphy and sedimentology: New York, Macmillan Publishing Company, 717p.Google Scholar
  13. HAMBLIN, A.P., and WALKER, R.G., 1979, Storm-dominated shallow marine deposits: the Fernie-Kootenay (Jurassic) transition. Southern Rocky Mountains:Can. Jour. Earth Sci., v.16, p.1673–1690.CrossRefGoogle Scholar
  14. HAYES, M.O., 1967, Hurricanes as geological agents: case studies of Hurricane Carla, 1961 and Cindy, 1963: Tex. Bur. Econ. Geol. Rept. Invest. 61. 56p.Google Scholar
  15. KELLING, G., and MULLIN, P.R., 1975, Graded lime stones and limestone-quartzite couplets, Possible storm-deposits from the Moroccan Carboniferous:Sedimentary Geology, v.13, p.161–190.CrossRefGoogle Scholar
  16. KUMAR, N., and SANDERS, J.E., 1976, Characteristics of shoreface storm deposits: modern and ancient examples:Jour. Sedimentary Petrology, v.46, p.145–162.Google Scholar
  17. KUMAR, N., and SANDERS, J.E., 1978, storm deposits, in R.W. Fairbridge and J. Bourgeois eds. Encyclopedia of Sedimentology, Stroudsburg, Dowden Hutchingson & Ross, p.767–770.Google Scholar
  18. KUTZBACH, J.E., and GUETTER, P.G., 1986, The influence of changing orbital parameters and surface boundary conditions on the climate simulations for the past 18000 years:Jour. Atmosph. Sci., v.43, p.1726–1759.CrossRefGoogle Scholar
  19. LAMB, H.H., and WOODROFFE, A., 1970, Atmospheric circulation during the last ice age:Quaternary Research, v.1, p.29–58.CrossRefGoogle Scholar
  20. LIANG, C.M., Studies on stratigraphy and sedimentology of Cambrian and Ordovician in southwestern border region of the North China Platform: (special research report) Chian University of Geosciences (Beijing), 144p.Google Scholar
  21. MANABE, S., and BROCCOLI, A.J., 1985, Acomparison of climate model sensitivity with data from the Last Glacial Maximum:Jour. of the Atmospheric Sci., v.42, p.2643–2651.CrossRefGoogle Scholar
  22. MARKELLO, J.R., and READ, J.F., 1981, Carbonate rampto-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians:Sedimentology, v.28, p. 573–598.CrossRefGoogle Scholar
  23. MARSAGLIA, K.M., and KLEINM, G. deV., 1983, The paleogeography of Paleozoic and Mesozoic storm depositional systems:Jour. Geol. v.91, p.117–142.CrossRefGoogle Scholar
  24. MENG, X.H., QIAO, X.F., and GE, M., 1986, Studies on ancient shallow sea carbonate storm deposits (tempestite) in North China and Dingjiatan model of facies sequences:Acta Sedimentologica Sinica (in Chinese), v.4, p.1–18.Google Scholar
  25. MILANKOVITCH, M., 1941, Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitproblem: Belgrade, Acad. Royal Serbe, Edens. Spec. 133, 633p.Google Scholar
  26. MITCHUM, R.M., and VAN WAGONER, J.C., 1991, Highfrequencies and their stacking patterns: sequencestratigraphic evidence of high-frequency eustatic cycles:Sedimentary Geology, v.70, p.131–160.CrossRefGoogle Scholar
  27. PIELKE, R.A., 1990, The hurricane. Shapman and Hall, New York, 228p.Google Scholar
  28. RESEARCH GROUP FOR STRATIGRAPHY IN NINGXIA PROVINCE, 1980, Stratigraphical timescale of Ningxia: Geological Publishing House, Beijing, 118p.Google Scholar
  29. SAMI, T., and DESROCHERS, A., 1992, Episodic sedimentation on early Silurian, storm-dominated carbonate ramp, Becscie and Merrimack formations, Anticosti Island, CanadaSedimentology v.39, p.355–381.CrossRefGoogle Scholar
  30. SCOTESE, C.R., BAMBACH, R.K., VAN DER VOO, ROB., and ZIEGLER, A.M., 1979, Paleozoic base maps:Jour. Geology, v.87, p.217–268.CrossRefGoogle Scholar
  31. SEPKOSKI, J.J., 1975, Depositional environments and fossil assemblages on the Cambrian shelf: an example from the Dresbachian of the northern Rocky Mountains: Abst. Prog. Geol. Soc. Am., v.7, p.1264–1265.Google Scholar
  32. —, 1978, Taphonomic factors influencing the lithologic occurrence of fossils in Dresbachian (Upper Cambrian) Shaly facies:Abst. Prog. Geol. Soc. Am., v.10, p.490.Google Scholar
  33. STAGEMAN, J. C., 1989, Depositional facies and provenance of the Bliss Formation (Cambro-Ordovician), Southern New Mexico and West Texas, in B.K. Cunningham, and D. W. Cromwell, eds.: The Lower Paleozoic of West Texas and South New Mexico—Modem exploration concepts, Permian Basin Section, Soc. Economic Paleontologists Mineralogists, Publication No. 89-31, p. 51–70.Google Scholar
  34. VAN WAGONER, J. C., POSAMENTIER, H. W., MITCHUM, R. M., VAIL, P. R., SARG, J. F., LOUTIT, T.S., and HARDENBOL, 1988, An overview of the fundamentals of sequence stratigraphy and key definitions: in Ch.K. Wilgus, B.S. Hastings, H. Posamentier, J.C. Van wagoner, Ch.A. Ross, and Ch. G. St. C. Kendall, eds., Sea-level changes: An integrated approach. Soc. Economic Paleontologists Mineralogists Spec. Publ. 42, p. 39–45.Google Scholar
  35. WALKER, R.G., DUKE, W.L., AND LECKLE, D.A., 1983, Hummocky stratification: Significance of its variable bedding sequences:Discussion: Geol. Soc. Am. Bull., v.94, p.1245–1251.Google Scholar
  36. WANG, H.Z., (editor-in-chief), 1985, Atlas of paleogeography of China, compiled by institute of Geology, Chinese Academy of Geological Sciences and Wuhan College of Geology, Cartographic publishing House, Beijing.Google Scholar
  37. WENDLAND, W. M., 1977, Tropical storm frequencies related to sea surface temperatures:Jour. Applied Meterology, v. 12, p. 477–481.CrossRefGoogle Scholar
  38. WILLIAMS, J., BARRY, R.G. and WASHINGTON, W.M., 1974, Simulation of the atmospheric circulation using the NCAR global circulation model with Ice Age boundary conditions:Jour. Applied Meteorology, v.13, p.305–317.CrossRefGoogle Scholar
  39. ZHENG, Z. C., and LI, Y.Z., 1985, The Cambrian System in Ningxia province: a special report, 242p.Google Scholar
  40. YANG, A.Z., CHEN, Y.Q., and WANG, H.Z., 1986, The geology of China. Oxford Monographs on Geology and Geophysics, No. 3 Clarendom press, Oxford, 303p.Google Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • Liang Chuanmao
    • 1
  • Gerald M. Friedman
    • 2
    • 3
  • Zheng Zhaochang
    • 4
  1. 1.China University of Geosciences (Beijing)BeijingChina
  2. 2.Department of GeologyBrooklyn College and Graduate School of the City University of New YorkBrooklynU.S.A.
  3. 3.Northeastern Science Foundationaffiliated with Brooklyn College of the City University of New YorkTroy
  4. 4.Geological Institute of Ningxia ProvinceYinchuanChina

Personalised recommendations