Advertisement

Carbonates and Evaporites

, Volume 6, Issue 2, pp 225–238 | Cite as

Sabkhas of the Bitter-Lakes, Egypt: Composition and origin

  • Ashraf M. A. Wali
Article

Abstract

Sabkhas adjoin the Bitter-Lakes area of Egypt (part of the Suez Canal complex), and occupy the topographic low areas east of the lakes. Each sabkha is subdivided into three zones: intertidal, transitional, and supratidal. Each of these zones has its own sedimentological characteristics, with a specific soil profile, and with marked transitional areas between them. The broad transitional zones arise from a seasonal areal expansion of the saline pools that occupy portions of the sabkha surface, particularly in winter. Thus, areas of mixed ancestry evolve because of the repeatedly shifting boundaries.

Halite and gypsum are the main evaporitic minerals formed within the sabkha soil profiles. Gypsum is the major cementing material within the soil, whereas halite is a summer precipitate in the ephemeral solar ponds and in the uppermost portion of the soil. Aragonite is associated with consolidated algal mats that display film, crenulated, and stratiform textures. The source of the water for the sabkha mostly is storm and tide-driven marine fluid. The peripheral part of the sabkha is in the flood recharge zone and receives a mixture of marine and non-marine waters, producing finely micritic dolomite. Chemical analysis of the sediments and brines confirm the mineralogical observations.

Keywords

Gypsum Halite Evaporite Stromatolite Dolomitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AILLAND, L., 1868, Les aux de Lacs Amers et du Lac Timsah (Analyses qualitatives et quantitatives). L’Isthme de Suez, v.13/292, p.359–365.Google Scholar
  2. AMIT, O., and BENTOR, Y.K., 1971, pH-dilution curves of saline waters: Chem. Geology, v.7, p.307–313.Google Scholar
  3. ARTHURTON, R. S., 1973, Experimentally produced halite compared with Triassic layered halite rock from Cheshire, England. Sedimentology, v. 20, p.145–160.CrossRefGoogle Scholar
  4. BADIOZAMANI, K., 1973, The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin. Jour. Sedimentary Petrology, v.43, p.965–984.Google Scholar
  5. BRAITSCH O., 1971, Salt deposits, their origin and composition. Springer Verlag, Berlin-Heidelberg, New York, 297 p.Google Scholar
  6. BUTLER, G.B., 1973, Strontium geochemistry of modern and ancient calcium sulfate minerals. p., 423–453, in: Purser, B.H., ed., The Persian Gulf, Springer Verlag, Berlin-Heidelburg, New York.Google Scholar
  7. CASTENS-SEIDELL, B., and HARDIE, L. A., 1983, Gypsum-anhydrite deposition in sabkhas: New observation from the Holocene tidal flats of the N.W. Gulf of California (abst.). Geol.Soc. America, Abst. with Program, 15, 540 p.Google Scholar
  8. CODY, R.D., and CODY, A.B., 1988, Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Jour. Sedimentary Petrology, v.58, p.247–255.Google Scholar
  9. EGYPTIAN GEOLOGICAL SURVEY AND MINING AUTHORITY, 1981, Geological Map of Egypt, Scale 1∶2,000,000.Google Scholar
  10. EVANS, G., SCHMIDT, V., BUSH, P., and NELSON, H., 1969, Stratigraphy and geologic hisory of the sabkha, Abu Dhabi, Persian Gulf. Sedimentology, v.12, p.145–159.Google Scholar
  11. FOLK, R. L. 1974, Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas, 182 p.Google Scholar
  12. FOLK, R. L., and LAND, L. S., 1975, Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. Amer. Assoc. Petroleum Geologists Bull., v.50, p.60–68.Google Scholar
  13. FRIEDMAN, G. M., 1961, Distinction between dune, beach, and river sands from their textural characteristics. Jour. Sedimentary Petrology, v.31, p.514–529.Google Scholar
  14. FRIEDMAN, G. M., 1978, Solar Lake: A sea-marginal pond of the Red Sea (Gulf of Aquaba or Elat) in which algal mats generate carbonate particles and laminites. p.227–235, in: Krumbein, W. E., ed., Environmental Biogeochemistry and Geomicrobiology. The aquatic environment 1. Ann Arbor Sci., Ann Arbor.Google Scholar
  15. FRIEDMAN, G. M., 1979, Address of the retiring President of the International Association of Sedimentologists: Differences in size distributions of populations of particles among sands of various origins: Sedimentology, v.26, p.3–32 and p. 859–862.Google Scholar
  16. FRIEDMAN, G. M., 1980, Reefs and evaporites at Ras Muhammad, Sinai Peninsula: A modern analogue for one kind of stratigraphic trap: Israel Journal of Earth Sciences, v.29, p. 166–170.Google Scholar
  17. FRIEDMAN, G. M., 1980 b, Dolomite is an evaporite mineral: evidence from the rock record and from sea-marginal ponds of the Red Sea, p. 69–80 in Zenger, D.H., Dunham, J.B., and Ethington, R.L., editors, Concepts and models of dolomitization: Society of Economic Palentologists and Mineralologists, Special Publication No. 28, 320 p.Google Scholar
  18. FRIEDMAN, G.M., Amiel, A.J., Braun, M., Miller, D.S., 1973a, Submarine cementation in reefs: example from the Red Sea: Journal Sedimentary Petrology, v.44, p.816–825.Google Scholar
  19. FRIEDMAN, G.M. and FONER, H.A., 1982, pH and Eh changes in sea marginal algal pools of the Red Sea and their effects on carbonate precipitation. Journal Sedimentary Petrology, v.52, p.41–46.Google Scholar
  20. FRIEDMAN, G. M., and KRUMBEIN, W.E., 1985, Hypersaline Ecosystems. Springer-Verlag, Berlin, 484 p.Google Scholar
  21. FRIEDMAN, G. M., SNEH, A. and OWEN, R. W., 1985, The Ras Muhammad Pool: Implications for the Gavish Sabkha. p.218–237. in: Friedman, G. M., and Krumbein, W.E., eds., Hypersaline Ecosystems. Springer-Verlag, Berlin.Google Scholar
  22. GAVISH, E., 1974, Geochemistry and mineralogy of a recent sabkha along the coast of Sinai, Gulf of Suez. Sedimentology, v.21, p.397–414.Google Scholar
  23. GAVISH, E., KRUMBEIN, W. G., and HALEVY, J., 1985, Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish sabkha. p.186–217. in: Friedman, G. M. and W. E. Krumbein, eds., Hypersaline Ecosystems, Springer Verlag, Berlin.Google Scholar
  24. GRUVEL, A., 1936, Contribution a’ I etude de la Bionomie generlearale et de I exploitation de la faune du Canal de Suez. Mem. Inst. Egypte, v.29, p.1–255.Google Scholar
  25. HANDFORD, C. R., 1988, Depositional interaction of siliciclastics and marginal marine evaporites. p. 139–181. in: Schreiber, B. C., ed., Evaporites and Hydrocarbons. Columbia University Press, New York.Google Scholar
  26. HOLSER, W. T., 1966, Diagenetic polyhalite in recent salt from Baja California: Amer. Mineralogist, v.51, p.99–109.Google Scholar
  27. HOLSER, W. T., 1979, Rotliegend evaporites, Lower Permian of northwestern Europe. Erdol Kohle Erdgas Petrochem., v.32, p.159–161.Google Scholar
  28. HSÜ, K.J., and SCHNEIDER, J., 1973, Progress report on dolomitization-hydrology of Abu Dhabisabkha, Arabian Gulf. p.409–423, in: Purser, B.C., ed., The Persian Gulf. Springer Verlag, Berlin.Google Scholar
  29. ISSAR A., ROSENTHALY, E., ECKSTEIN, Y., and BOGACH, R., 1971, Formation waters, hot springs, and mineralization phenomena along the eastern shore of the Gulf of Suez. Inter. Assoc. Sci. Hydrology Bull., XVI v.39, p.25–44.Google Scholar
  30. KENDALL, A. C., and SKIPWITH, P.S., 1969, Holocene shallow-water carbonate and evaporitic sediments of Khor El Bazan, Abu Dhabi, southwest Persian Gulf. Amer. Assoc. Petroleum Geologists Bulletin, v.53, p.841–869.Google Scholar
  31. KINSMAN, D.J.J., 1966, Gypsum and anhydrite of recent age, Trucial Coast, Persian Gulf. in: Second Symposium on Salt, Cleveland, Ohio, Northern Ohio Geological Society, v.1, p.302–326.Google Scholar
  32. KINSMAN, D.J.J., 1976, Evaporites: relative humidity control of primary mineral facies: Sedimentary Petrology, v.46, p.273–279.Google Scholar
  33. KINSMAN, D.J.J., and PARK, R.K., 1976, Algal belt and ciastal sabkha evolution, Trucial Coast, Persian Gulf. in: Walter, M.R., ed., Stromatolites, p.421–433, Elsevier, Amsterdam.Google Scholar
  34. KUSHNIR, J., 1981, Formation and early diagenesis of varved evaporitic sediments in a coastal hypersaline pool: Jour. Sedimentary Petrology, v.51, p.1193–1203.Google Scholar
  35. LAND, L. S., 1983, Dolomitization: Amer. Assoc. Petroleum Geologists, Educational Course Note Series 24, 20 p.Google Scholar
  36. LANG, W., 1920, Werwitterung und bedenbildung alsfinfuhung in die Boden Kmd-Stuttgart, C.F. “Climatology and Microclimatology”: Dzerdzeereski, v.1, B.L.1958.Google Scholar
  37. EESSEPS, F. de 1871, Communication sur les lacs amer de I Isthme de Suez. I. Comm. Acad. Sci. Paris, v.78, p.1740–1748.Google Scholar
  38. LESSEPS, F. de, 1876, Deuxieme communication sur les lacs maers de I Isthme de Suez. Comm. Acad. Sci. Paris, v.82, p.1133–1138.Google Scholar
  39. LOGAN, B. W., 1987, The Macleod evaporite basin, western Australia. Amer. Assoc. Petroleum Geologists, Memoir 44, 140 p.Google Scholar
  40. LOWENSTEIN, T. K., and HARDIE, L. A., 1985, Criteria for the recognition of salt pan evaporites. Sedimentology, v.32, p.627–644.Google Scholar
  41. MASSON, P. H., 1955, An occurrence of gypsum in southwest Texas. Jour. Sedimentary Petrology, v.25, p.72–77.Google Scholar
  42. MC KENZIE, J. A., 1981, Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi: a stable isotope study. Jour. Geology, v.89, p.185–198.Google Scholar
  43. MESHAL, A.H., 1975, Brine at the bottom of the Great Bitter Lake as a result of closing the Suez Canal. Nature, v.256, p. 297–298.Google Scholar
  44. Miller, A. R. and Munns, R. G., 1974, The Bitter Lake salt barrier, In: I Oceanographie Physique de la Mer Rouge: Symp. Assoc. Int. Sci. Phys. Ocèan. CNEXO, Serie: Actes Coll. v.2, p.295–309.Google Scholar
  45. MUIR, M., LOCK, D., and VON DER BORCH, C. C., 1980, The Coorong model for penecontemporaneous dolomite formation in the Middle Proterozoic, Mc Arthur Group, northern Territory, Australia. Soc. Econ. Paleontologists Minineralogists Spec. Publication no. 28, p.51–67.Google Scholar
  46. MÜLLER, D. W., MC KENZIE, J. A., and MUELLER, P. A., 1990, Abu Dhabi sabkha revisited: Application of strontium isotopes to test a hydrologic model for early dolomitization: Geology, v.18, p.618–621.Google Scholar
  47. NISSENBAUM, A., ed., 1980, Hypersaline Brines and Evaporitic Environments, Elsevier, Amsterdam, 270 p.Google Scholar
  48. PATTERSON, R. J., and KINSMAN, D. J. J., 1981, Hydrologic framework of a sabkha along Arabian Gulf: Amer. Assoc. Petroleum, Geologists Bull., v.65, p.1457–1475.Google Scholar
  49. PIERRE, C. L., ORTIEB, L., and PERSON, A., 1984, Supratidal evaporitic dolomite at Ojo de Liebre lagoon: Mineralogical and isotopic arguments for primary crystallization: Jour. Sedimentary Petrology, v.54, p.1049–1061.Google Scholar
  50. POR, F.D., 1978, Lessepian Migration. Ecological Studies 23. Springer-Verlag, Berlin, 230 p.Google Scholar
  51. PURSER, B. H. (ed.), 1973, The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag, New York, 471 p.Google Scholar
  52. SAHU, B.K., 1964, Depositional mechanism from size analysis of clastic sediments. Jour. Sedimentary Petrology, v.34, p.73–83.Google Scholar
  53. SAID, R., 1962, The Geology Of Egypt. Elsevier Publ. Co., Amsterdam-New York, 377 p.Google Scholar
  54. SCHREIBER, B. C., 1986, Arid shorelines and evaporites. in: Reading, H.G., ed., Sedimentary Environments and Facies, p. 189–226, Blackwell Scientific Publications, Oxford.Google Scholar
  55. SHEARMAN, D. J., 1963, Recent anhydrite, gypsum, dolomite and halite from the coastal flats of the Arabian shore of the Persian Gulf. Proc. Geol. Soc. London, #1607, p.63–65.Google Scholar
  56. SHEARMAN, D.J., 1966, Origin of marine evaporite by diagenesis. Inst. Mining and Metallurgy Transactions, v.75, p.207–215.Google Scholar
  57. SHEARMAN, D. J., 1970, Recent halite rock, Baja California, Mexico. Inst. Min. Metall. Transactions, Series B, v.79, p.155–162.Google Scholar
  58. SNEH, A. and FRIEDMAN, G. M., 1985, Hypersaline sea-marginal flats of the Gulfs of Elat and Suez. in: Friedman, G. M. and Krubein, W. E., eds., Hypersaline Ecosystems, p. 103–135, Springer Verlag, Berlin.Google Scholar
  59. THOMPSON, B. W., 1965, Climate of Africa, Oxford University Press, London, 132 p.Google Scholar
  60. THORSON, G., 1971, Animal migrations through the Suez Canal in the past, recent years and the future (a preliminary report). Vie et Milieu Suppl., v.22, p.841–846.Google Scholar
  61. WALI, A.M.A., ABOUKHADRAH, A.M., and MOUSA, M. H. M., 1991, Recent sabkhas of Ayun Musa and El-Shatt recent sabkhas, Sinai, Egypt: Jour. Carbonates and Evaporites, v.13, p.29–43.Google Scholar
  62. WALI, A.M.A., ABOUKHADRAH, A.M., and MOUSA, M.H.M., (in press) Sedimentology of Ayun Musa and El-Shatt recent sabkhas, Sinai, Egypt. Arab Gulf Jour. Scientific Res.Google Scholar
  63. WALI, A.M.A., ABDEL WAHABS., and TAHER, A. G., 1986, On some supratidal features, Ras Shukeir coastal sabkha, Red Sea, Egypt, E.G.P.C. Eighth Exploration Conference, E.G.P.C., v.1, p.332–343.Google Scholar
  64. WALTER, M. R., GLOUBIC, S., and PREISS, W. V., 1973, Recent stromatolites from hydromagnesite and aragonite depositing lakes near Coorong lagoon, South Australia: Jour. Sedimentary Petrology, v.43, p.1021–1030.Google Scholar
  65. WARD, R. C., 1974, Principles of hydrology. Mc Graw-Hill Publ. Co. Ltd. Maidenhead, Yorkshire, England, 367 p.Google Scholar
  66. WARREN, J. K., 1982 a, The hydrological setting occurrence and significance of gypsum in late Quaternary salt lakes in south Australia. Sedimentology, v.52, p.609–637.Google Scholar
  67. WARREN, J. K., 1982 b, The hydrological significance of Holocene tepees, stromatolites and box limestones in coastal salinas in south Australia. Jour. Sedimentary Petrology, v.29, p.1171–1201.Google Scholar
  68. WARREN, J.K., 1989, Evaporite Sedimentology. Prentice-Hall Inc., Englewood, N.J., 285 p.Google Scholar
  69. WARREN J. K., and KENDALL, C. G. St.C., 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings: Modern and ancient: Amer. Assoc. Petroleum Geologists Bull., v.69, p.1013–1023.Google Scholar
  70. ZAHRAN, M. A., 1967, On the ecology of the east coast of the Gulf of Suez, I- Littoral marshes: Inst. Desert of Egypt Bull., v.17/2, p.225–250.Google Scholar

Copyright information

© Springer 1991

Authors and Affiliations

  • Ashraf M. A. Wali
    • 1
    • 2
  1. 1.Geology Department Faculty of ScienceCairo University-GIZACairoEgypt
  2. 2.Department of GeologyQueens College (C.U.N.Y.)FlushingU.S.A.

Personalised recommendations