Advertisement

Neurotoxicity Research

, Volume 1, Issue 2, pp 71–80 | Cite as

The role of adrenochrome in stimulating the oxidation of catecholamines

  • Alberto BindoliEmail author
  • Guido Scutari
  • Maria Pia Rigobello
Article

Abstract

Adrenochrome, a stable oxidation product formed after oxidation of adrenaline, strongly stimulates oxygen uptake occurring during the autoxidation of adrenaline, other catecholamines and ascorbate. Oxygen consumed is converted to hydrogen peroxide suggesting the occurrence of a redox cycling process. The reduction of adrenochrome operated by adrenaline is accelerated by the exclusion of oxygen indicating that the oxidation of adrenaline occurs directly and superoxide anion does not necessarily mediate it. Oxygen consumption, observed in the catecholamine/adrenochrome and ascorbate/adrenochrome systems, is due to the autoxidation of leucoadrenochrome that, at variance with adrenaline, easily autoxidizes also at physiological pH. Therefore, in these systems, leucoadrenochrome appears to be the major determinant of the production of superoxide anion.

Keywords

Adrenaline Adrenochrome Aminochromes Ascorbate Catecholamine oxidation Redox cycling 

Abbreviations

DTPA

diethylenetriamine pentaacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ball, E.G. and Chen, T. (1933) Studies on oxidation-reduction. XX. Epinephrine and related compounds.J. Biol. Chem. 102, 691–719.Google Scholar
  2. Bindoli, A., Rigobello, M.P. and Galzigna, L. (1988) Production of reduced forms of oxygen by adrenochrome in the presence of ascorbate, microsomes and submitochondrial particles. In: Rice Evans, C. and Dormandy, T. (Eds.),Free Radicals: Chemistry, Pathology and Medicine (Richelieu Press, London), pp. 293–300.Google Scholar
  3. Bindoli, A., Rigobello, M.P. and Galzigna, L. (1989) Toxicity of aminochromes.Toxicology Lett. 48, 3–20.CrossRefGoogle Scholar
  4. Bindoli, A., Deeble, D.J., Rigobello, M.P. and Galzigna, L. (1990a) Direct and respiratory chain-mediated redox cycling of adrenochrome.Biochim. Biophys. Acta 1016, 349–356.PubMedCrossRefGoogle Scholar
  5. Bindoli, A., Rigobello, M.P. and Galzigna, L. (1990b) Reduction of adrenochrome by rat liver and brain DT-diaphorase.Free Rad. Res. Coram. 8, 295–298.CrossRefGoogle Scholar
  6. Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidation products of catecholamines.Free Radical Biol. Med. 13, 391–405.CrossRefGoogle Scholar
  7. Bors, W., Saran, M., Michael, C, Lengfelder, E., Fuchs, C. and Spottl, R. (1975) Pulse-radiolytic investigation of catechols and catecholamines. I. Adrenaline and adrenochrome.Int. ]. Radiat. Biol. 28, 353–371.CrossRefGoogle Scholar
  8. Bors, W., Michel, C., Saran, M. and Lengfelder, E. (1978a). The involvement of oxygen radicals during the autoxidation of adrenalin.Biochim. Biophys. Acta 540, 162–172.PubMedGoogle Scholar
  9. Bors, W., Saran, M., Lengfelder, E., Michel, C, Fuchs, C. and Frenzel, C. (1978b) Detection of oxygen radicals in biological reactions.Photochem. Photobiol. 28, 629–638.PubMedCrossRefGoogle Scholar
  10. Cazzaro, E, Rigobello, M.P. and Bindoli, A. (1996) Personal computer control of electrochemical detectors utilized for mitochondrial studies.Comput. Methods Progr. Biomed. 51, 141–151.CrossRefGoogle Scholar
  11. Cook, J.A., Wink, D.A., Blount, V., Krishna, M.C. and Hanbauer, I. (1996) Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in cultured mesencephalic neurons. Insight into potential mechanisms of nitric oxide-mediated neurotoxicity.Neurochem. Intern. 28, 609–617.CrossRefGoogle Scholar
  12. Daveu, C, Servy, C, Dendane, M., Marin, P. and Ducrocq, C. (1997) Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide.Nitric Oxide 1, 234–243.PubMedCrossRefGoogle Scholar
  13. Ernster, L. (1967) DT-diaphorase.Methods Enzymol. 10, 309–317.CrossRefGoogle Scholar
  14. Ernster, L. (1987) DT-diaphorase: a historical review.Chemica Scripta 27A, 1–13.Google Scholar
  15. Estabrook, R.W. (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios.Methods Enzymol. 10, 41–47.CrossRefGoogle Scholar
  16. Falk, J.E. (1949) The formation of hydrogen carriers by haematin-catalyzed peroxidations. 2. Some reactions of adrenaline and adrenochrome.Biochem. J. 44, 369–373.Google Scholar
  17. Fornstedt, B., Rosengren, E. and Carlsson, A. (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species.Neuropharmacology 25, 451–454.PubMedCrossRefGoogle Scholar
  18. Green, D.E. and Richter, D. (1937) Adrenaline and adrenochrome.Biochem. J. 31, 596–616.PubMedGoogle Scholar
  19. Hastings, T.G. (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J. Neurochem. 64, 919–924.PubMedGoogle Scholar
  20. Hawley, M.D., Tatawawadi, S.V., Piekarsky, S. and Adams, R.N. (1967) Electrochemical studies of the oxidation pathways of catecholamines.J. Am. Chem. Soc. 89, 447–450.PubMedCrossRefGoogle Scholar
  21. Heacock, R.A. (1959) The chemistry of adrenochrome and related compounds.Chem. Rev. 59, 181–237.CrossRefGoogle Scholar
  22. Heacock, R.A. and Powell, W.S. (1973) Adrenochrome and related compounds. In: Ellis, G.P. and West, G.B. (Eds.),Progress in Medicinal Chemistry. Vol. 9 (North Holland, Amsterdam) pp. 275–339.Google Scholar
  23. Hoffer, A., Osmond, H. and Smythies, J.R. (1954) Schizophrenia. A new approach. Part II.J. Ment. Sci. 100, 29–45.PubMedGoogle Scholar
  24. Jewett, S.L., Eddy, L.J. and Hochstein, P. (1989) Is the autoxidation of catecholamines involved in ischemia-reperfusion injury?Free Radical Biol. Med. 6, 185–188.CrossRefGoogle Scholar
  25. Kalyanaraman, B., Felix, C.C. and Sealy, R.C. (1984) Electron-spin resonance-spin stabilization of semiquinones produced during oxidation of epinephrine and its analogues.J. Biol. Chem. 259, 354–358.PubMedGoogle Scholar
  26. Kalyanaraman, B., Korytowski, W., Pilas, B., Sarna, T, Land, E.J. and Truscott, T.G. (1988) Reaction between ortho-semiquinones and oxygen: pulse radiolysis, electron spin resonance and oxygen uptake studies.Arch. Biochem. Biophys. 266, 277–284.PubMedCrossRefGoogle Scholar
  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folia phenol reagent.J. Biol. Chem. 193, 265–293.PubMedGoogle Scholar
  28. Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.PubMedCrossRefGoogle Scholar
  29. Matthews, S.B., Henderson, A.H. and Campbell, A.K. (1985a) The adrenochrome pathway: the major route for adrenalin catabolism by polymorphonuclear leucocytes.J. Mol. Cell. Cardiol. 17, 339–348.PubMedCrossRefGoogle Scholar
  30. Matthews, S.B., Hallet, M.B., Henderson, A.H. and Campbell, A.K. (1985b) The adrenochrome pathway: a potential catabolic route for adrenaline metabolism in inflammatory disease.Adv. Myocardiol. 6, 367–381.PubMedGoogle Scholar
  31. Misra, H.P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem. 247, 3170–3175.PubMedGoogle Scholar
  32. Mukherjee, T. (1987) One-electron reduction of juglone (5-hydroxy-l,4-naphthoquinone): a pulse radiolysis study.Radiat. Phys. Chem. 29, 455–462.Google Scholar
  33. Pileblad, E., Slivka, A., Bratvold, D. and Cohen, G. (1988) Studies on the autoxidation of dopamine: interaction with ascorbate.Arch. Biochem. Biophys. 263, 447–452.PubMedCrossRefGoogle Scholar
  34. Rosengren, E., Linder-Eliasson, E. and Carlsson, A. (1985) Detection of 5-S-cysteinyl-dopamine in human brain.J. Neurol. Transm. 63, 247–253.CrossRefGoogle Scholar
  35. Smythies, J. (1996) On the function of neuromelanin.Proc. R. Soc. London B 263, 487–489.CrossRefGoogle Scholar
  36. Smythies, J. and Galzigna, L. (1998) The oxidative metabolism of catecholamines in the brain: a review.Biochim. Biophys. Acta 1380, 159–162.PubMedGoogle Scholar
  37. Vulpian, E.F.A. (1856) Notes sur quelques reactions propres a la substance des capsules surrenales.C.R. Acad. Sci. 43, 663–665.Google Scholar
  38. Wiesner, K. (1942) Polarographische Untersuchung des Adrenochroms.Biochem. Z. 313, 48–61.Google Scholar
  39. Yoshie, Y. and Ohshima, H. (1997) Synergistic induction of DNA strand breakage caused by nitric oxide together with catecholamines: implication for neurodegenerative disease.Chem. Res. Toxicol. 10, 1015–1022.PubMedCrossRefGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 1999

Authors and Affiliations

  • Alberto Bindoli
    • 1
    • 2
    Email author
  • Guido Scutari
    • 2
  • Maria Pia Rigobello
    • 2
  1. 1.Centro Studio BiomembraneCNRPadovaItaly
  2. 2.Dipartimento di Chimica BiologicaUniversità di PadovaPadovaItaly

Personalised recommendations