Advertisement

Canadian Journal of Anesthesia

, Volume 53, Issue 4, pp 363–369 | Cite as

Ľindex bispectral et la saturation en oxygène du sang cérébral régional pendant ľanesthésie au propofol/N2O

  • Yoshinori Kanemaru
  • Koichi NishikawaEmail author
  • Fumio Goto
Article

Objectif

Comparer ľinfluence du midazolam, de ľisoflurane et de ľaminophylline (qui peut contrer ľaction anesthésique) sur ľindex bispectral (BIS) et la saturation en oxygène du sang cérébral régional (rSO2) pendant ľanesthésie au propofol/N2O, et vérifier si les modifications du BIS, induites par le médicament, sont accompagnées ďun changement dans la rSO2.

Méthode

Ľanesthésie générale a été administrée à 36 patients avec une perfusion continue de propofol pour maintenir une valeur de BIS de 40 <; 5. Les mesures de base enregistrées, les patients ont reÇu au hasard du midazolam, de ľisoflurane ou de ľaminophylline. Le BIS, la rSO2 par spectroscopie en proche infrarouge et ľhémodynamique ont été notés pendant 60 min.

Résultats

Le midazolam (0,05 mg·kg-1) a significativement réduit le BIS de 47,8 ± 5,4 à 35,0 ± 4,5 cinq minutes après ľinjection (P < 0,001 vs témoin) pendant ľanesthésie au propofol, tandis que la rSO2 n’a pas changé. De même, ľisoflurane (télé-expiratoire, 1,1 %) a diminué le BIS de 42,5 ± 7,5 à 27,8 ± 6,9 (P < 0,001) sans affecter la rSO. Par ailleurs, ľaminophylline (3 mg·kg-1) a été associée à une augmentation du BIS de 41,6 ± 2,1 à 48,3 ± 9,2 cinq minutes après ľinjection (P < 0,05) sans affecter la rSO2. Conclusion : Les baisses du BIS induites par le midazolam ou ľisoflurane pendant ľanesthésie au propofol n’étaient pas accompagnées ďune baisse de la rSO2. Cependant ľaminophylline a significativement augmenté le score du BIS, laissant croire qu’elle peut contrer, du moins en partie, les actions sédatives du propofol.

Bispectral index and regional cerebral oxygen saturation during propofol/N2O anesthesia

Abstract

Purpose

A study was undertaken to compare the influence of midazolam, isoflurane, and aminophylline (which may antagonize anesthetic action) on bispectral index (BIS) and regional cerebral oxygen saturation (rSO2) during propofol/N2O anesthesia, and to test the hypothesis that the drug-induced changes in BIS values are accompanied by a change in rSO2. Methods: General anesthesia was administered to 36 patients with a continuous infusion of propofol to maintain a BIS value of 40 ± 5. After baseline recordings, patients were randomly assigned to receive either midazolam, isoflurane, or aminophylline. Bispectral index values, rSO2 using near-infrared spectroscopy, and hemodynamic parameters were recorded for 60 min.

Results

Midazolam (0.05 mg·kg-1) significantly decreased the BIS from 47.8 ± 5.4 to 35.0 ± 4.5 at five minutes after injection (P< < 0.001 vs control) during propofol anesthesia, whereas the rSO2 was unchanged. Similarly, isoflurane (1.1% end-tidal) decreased the BIS from 42.5 ± 7.5 to 27.8 ± 6.9 (P < 0.001) without affecting rSO2. In contrast, aminophylline (3 mg·kg-1) was associated with an increase in BIS from 41.6 ± 2.1 to 48.3 ± 9.2 at five minutes after injection (P < 0.05) without affecting rSO2. Conclusions: Midazolam or isoflurane-induced decreases in the BIS during propofol anesthesia were not accompanied by a decrease in rSO2. Aminophylline significantly increased the BIS score during propofol anesthesia, suggesting that aminophylline can antagonize, at least in part, the sedative actions of propofol.

References

  1. 1.
    Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 1994; 10: 392–404.PubMedCrossRefGoogle Scholar
  2. 2.
    Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980–1002.PubMedCrossRefGoogle Scholar
  3. 3.
    Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, ManbergP. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997; 86: 836–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Ibrahim AE, Taraday JK, Kharasch ED. Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol. Anesthesiology 2001; 95: 1151–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Iselin-Chaves IA, Flaishon R, Sebel PS, et al. The effect of the interaction of propofol and alfentanil on recall, loss of consciousness, and the Bispectral Index. Anesth Analg 1998; 87: 949–55.CrossRefGoogle Scholar
  6. 6.
    Stirt JA.Aminophylline is a diazepam antagonist. Anesth Analg 1981; 60: 767–8.PubMedGoogle Scholar
  7. 7.
    Arvidsson SB, Ekstrom-Jodal B, Martinell SA, Niemand gnD. Aminophylline antagonises diazepam sedation. Lancet 1982; 2: 1467.PubMedCrossRefGoogle Scholar
  8. 8.
    Niemand D, Martinell S, Arvidsson S, Svedmyr N, Ekstrom-Jodal B. Aminophylline inhibition of diazepam sedation: is adenosine blockade of GABA-receptors the mechanism? Lancet 1984; 1: 463–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor BL, Collins C. Aminophylline and propofol: apparent antagonism. Anaesthesia 1988; 43: 508.PubMedCrossRefGoogle Scholar
  10. 10.
    Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol 2003; 15: 302–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Lovell AT, Owen-Reece H, Elwell CE, Smith M, Goldstone JC. Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia. Anesth Analg 1999; 88: 554–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Michenfelder JD. Anesthesia and the Brain. New York: Churchill Livingstone; 1988.Google Scholar
  13. 13.
    Milde LN, Milde JH, Michenfelder JD. Cerebral functional, metabolic, and hemodynamic effects of etomi- date in dogs. Anesthesiology 1985; 63: 371–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Iwasaki K, Nomoto Y, Ishiwata M, Yokota T, Ogawa R. Vital capacity induction with 8% sevoflurane and N2O causes cerebral hyperemia. J Anesth 2003; 17: 3–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Turan A, Memis D, Karamanlyodthlu B, Pamukcu Z, Sut N. Effect of aminophylline on bispectral index. Acta Anaesthesiol Scand 2004; 48: 408–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishiyama T, Oguchi T, Iijima T, Matsukawa T, KashimotoS, Kumazawa T. Ephedrine, but not phenylephrine, increases bispectral index values during combined general and epidural anesthesia. Anesth Analg 2003; 97: 780–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Torella F, Haynes SL, McCollum CN. Cerebral and peripheral oxygen saturation during red cell transfusion. J Surg Res 2003; 110: 217–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Fujinaga M, Maze M. Neurobiology of nitrous oxideinduced antinociceptive effects. Mol Neurobiol 2002; 25: 167–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Barr G, Jakobsson JG, Owall A, Anderson RE. Nitrous oxide does not alter bispectral index: study with nitrous oxide as sole agent and as an adjunct to i.v. anaesthesia. Br J Anaesth 1999; 82: 827–30.PubMedGoogle Scholar
  20. 20.
    Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 2000; 93: 1336–44.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2006

Authors and Affiliations

  • Yoshinori Kanemaru
    • 1
  • Koichi Nishikawa
    • 1
    Email author
  • Fumio Goto
    • 1
  1. 1.Department of AnesthesiologyGunma University Graduate School of MedicineMaebashi CityJapan

Personalised recommendations