Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sympatho-adrenal responses during general anaesthesia in the dog and man

Summary

Plasma catecholamine levels were studied during general anaesthesia with diethyl ether, cyclopropane, and halothane in dogs and human subjects. Anaesthesia with ether/oxygen caused highly significant increases in plasma noradrenaline in dogs and man. The response was less marked in man, but a significant direct correlation could be established (in a small number of patients) between the rise in plasma noradrenaline and blood ether concentrations during ether anaesthesia without surgical interference. Plasma adrenaline was also significantly increased in dogs during ether anaesthesia, and in man to a lesser extent; highly significant rises were measured during surgery in man. The severe metabolic acidosis induced by diethyl ether in the dog bore a direct relationship to circulating catecholamine concentration and was greatly reduced by bilateral adrenalectomy. A mild but definite metabolic acidosis was measured during nitrous oxide/ oxygen/ether and ether/oxygen anaesthesia in man. In adrenalectomized dogs, variable moderate rises in plasma noradrenaline were measured during ether anaesthesia, from which it is inferred that in this species the rise in plasma noradrenaline stems partly from extra-adrenal areas. Since hypercarbia superimposed on ether anaesthesia in adrenalectomized dogs caused further increases in plasma noradrenaline, it is considered that the extra-adrenal sympathetic excitation induced by ether is submaximal.

Cyclopropane anaesthesia in dogs with normal pCO2 was accompanied by very small increases in plasma adrenaline, probably accounted for by blood sampling. In man, cyclopropane anaesthesia was associated with a significant increase in total plasma catecholamine concentration, with definite rises in plasma noradrenaline in certain patients at both normal and raised levels of arterial pCO2, the increases at normal pCO2 becoming significant statistically only as a result of deeper anaesthesia, because of an effect of surgery, or both.

Halothane did not produce significant increases in plasma catecholamine concentration in dogs or man, although plasma adrenaline was significantly increased during surface surgery under halothane anaesthesia in man.

Elevated plasma catecholamine levels as a result of haemorrhage during ether anaesthesia, hypercarbia and asphyxia during cyclopropane anaesthesia. and hypercarbia during ether anaesthesia in adrenalectomized dogs, together with studies previously reported, indicated that the currently used general anaesthetic agents do not have any major “dampening” effect on the sympathoadrenal responses to the common forms of stimulation encountered in the operating room.

Résumé

Nous avons étudié chez des chiens et chez des humains, au cours de ľanesthésie générale à ľéther, au cyclopropane et à ľhalothane, les variations du taux de catécholamine dans le plasma. Ľanesthésie à ľéther et oxygène a entraîné une augmentation importante du taux de noradrénaline dans le plasma aussi bien chez les chiens que chez ľhomme. Chez ľhomme, la réponse était moins marquée, mais on a pu établir une corrélation directe (chez un petit nombre de malades) entre ľaugmentation du taux de noradrénaline dans le plasma et la concentration du sang en éther au cours de ľanesthésie à ’éther sans chirurgie. Le taux ďadrénaline dans le plasma était également augmenté de façon importante chez lea chiens au cours de ľanesthésie à ľéther, mais chez ľhomme, à un degré moindre; au cours de la chirurgie on a également observé des augmentations considérables. Ľacidose métabolique marquée produite par ľéther chez le chien est directement proportionnelle au taux de catécholamine circulant, et elle a été considérablement réduite par la surrénalectomie bilatérale. Nous avons également dépisté, chez ľhomme, au cours de ľanesthésie au protoxide/oxygène/éther, et au cours de ľanesthésie à ľéther/oxygène, une acidose légère mais positive.

Chez les chiens surrénalectomisés, nous avons observé une augmentation légère et variable du taux ďadrénaline dans le plasma, au cours de ľanesthésiç à ľéther, ce qui nous incite à croire que, chez cet animal du moins, ľaugmentation du taux ďadrénaline dans le plasma provient, en partie, ďendroits autres que; la surrénale. Etant donné que si ľon ajoute ľhypertcarbie à Ľanesthésie à ľéther, chez des chiens surrénalectomisés, ľon observe une augmentation additionnelle; du taux de noradrénaline dans le plasma, Ton est porté à croire que ľexcitation sympathique extrasurrénalienne produite par ľéthér est une excitation probables ment submaximale.

Au cours de ľanesthésie au cyclopropane, chez dès chliens conservant un P CO2 normal, ľon a constaté de légères augmentations du taux ďadrénaline dans 1e plasma, occasionnées probablement par ľéchantillohnàge du sang. Chez ľhomme^ ľanesthésie au cyclopropane s’est accompagnée ďune augmentation importante du taux de catécholamine dans le plasma et, chez certains malades dont le P CO2 était normal et chez ďautres dont le P CO2 était élçvé, a’une augmentation nette du taux de noradrénaline dans le plasma. Ces augmentations, lorsque le P CO2 était normal, prenaient une valeur statistique appréciable, si on leur attribut comme cause, soit une anesthésie plus profonde, soit un effet de la chirurgie, soit les deux effets ensemble.

En ce qui concerne Ľhalothane, aussi bien chez les Ichiens que chez ľhomme nous n’avons pas observé, au cours de ľanesthésie, ďaugmentation importante du taux de catécholamine dans le plasma, bien que all cours de la chirurgie de surface chez ľhomme anesthésié à ľhalothane, nous atvons trouvé une augment tation importante du taux ďadrénaline dans le plasma.

Les taux élevés de catécholamine dans le plasma, (résultant de ľhémorragie durant ľanesthésie à ľéther, ľhypercarbie et ľasphyxie durant ľanesthésie au cyclopropane, ľhypercarbie durant ľanesthésie à ľéther chez des chiens surrénalectomisés, les études citées antérieurement, tout indique que les agents anesthésiques généraux n’exercent pas ďeffets inhibiteurs marqués sur les réponses sympathicosurrénaliennes aux diverses formes de stimulation subiejs dans les salles ďopération.

References

  1. 1.

    Price, H. L. General Anesthesia and Circulatory Homeostasis. Physiol. Rev.40: 187 (1960).

  2. 2.

    Millar, R. A., &Benfey, B. G. The Fluorimetric Estimation of Adrenaline and Noradrénaline during Haemorrhagic Hypotension. Brit. J. Anaesth.30: 159 (1958).

  3. 3.

    Millar, R. A., &Benfey, B. G. plasma Adrenaline and Noradrenaline Levels during Haemorrhage Induced after Chlorpromazine Injection. Brit. J. Anaesth.31: 258 (1959),

  4. 4.

    Millar, R. A., Keener, E. B., &Benfey, B. G. Plasma Adrenaline and Noradrenaline after Phenoxybenzamine, and during Haemorrhagic Hypotension in Normal and Adrenalectomized Dogs. Brit. J. Pharmacol.14: 9 (1959).

  5. 5.

    Millar, R. A. Plasma Adrenaline and Noradrenaline during Diffusion Respiration. J. Physiol.160: 79 (1960).

  6. 6.

    Millar, R. A., &Morris, M. E. Apneic Oxygénation in Adrenalectomized Dogs. Anesthesiology22: 433 (1961).

  7. 7.

    Millar, R. A., &Morris, M. E. Norepinephrine Release during Respiratory Acidosis in Adrenalectomized Dogs. Anesthesiology22: 62 (1961).

  8. 8.

    Millar, R. A., Brindle, G. F., &Gilbert, R. G. B. Studies with an Organic Buffer (T.H.A.M.) during Apnoeic Oxygénation in Dogs. Brit. J. Anaesth.32: 248 (1960).

  9. 9.

    Millar, R. A., &Morris, M. E. Induced Sympathetic Stimulation during Halothane Anaesthesia. Canad. Anaesth. Soc. J.7: 423 (1960).

  10. 10.

    Millar, R. A., &Morris, M. E. A Study of Methoxflurane Anaesthesia. Canad. Anaesth. Soc. J.5: 210 (1961).

  11. 11.

    Benfey, B. G., &Millar, R. A. Catechol Amines in Blood, Urine, and Tumour in a Patient with Phaeochromocytoma. Canad. Med. Assoc. J.77: 701 (1957).

  12. 12.

    Bromage, P. R., &Millar, R. A. Epidural Blockade and Circulating Catechol Amine Levels in a Child with Phaeochromocytoma. Canad. Anaesth. Soc. J.5: 282 (1958).

  13. 13.

    Conn, A. W., &Millar, R. A. Post Occlusion Hypertension and Plasma Catecholamine Levels. Canad. Anaesth. Soc. J.7: 443 (1960).

  14. 14.

    Marrett, H. R. Halothane: Its Use in Closed Circuit. Brit. Med. J.ii: 331 (1957).

  15. 15.

    Euler, U. S. v., &Floding, I. Fluorimetric Micromethod for Differential Estimation of Adrenaline and Noradrenaline. Acta Physiol. Scand, (suppl. 118)33: 46 (1955).

  16. 16.

    Astrup, P., &Schrøder, S. Apparatus for Anaerobic Determination of the pH of Blood at 38 Degrees Centigrade. Scand. J. Clin. Lab. Invest.8: 30 (1956).

  17. 17.

    Astrup, P. Simple Electrometric Technique for Determination of Carbon Dioxide Tension in Blood and Plasma, Total Content of Carbon Dioxide in Plasma, and Bicarbonate Content in “Separated” Plasma at a Fixed Clarbon Dioxide Tension (40 mm. Hg). Scand. J. Clin. Lab. Invest.8: 33 (1956).

  18. 18.

    Siggaard Andersen, O.;Engel, K.;Jørgensen, K.; &Astrup, P. A Micrd Method for Determination of pH, Carbon Dioxide Tension, Base Excess and Standard Bicarbonate in Capillary Blood. Scamd. J. Clin. &: Lab. Invest.12: 172 (1960).

  19. 19.

    Nahas, G. G. Spectrophotometric Determination of Hemoglobin and Oxyhemojglobin in Whole Hemolyzed Blood. Science113: 723 (1951).

  20. 20.

    Price, H. L., &Price, M. L. Determination of Diethyl Ether in Blood. Anesthesiology17: 293 (1956).

  21. 21.

    Shaffer, P. A., &Ronzoni, E. Ether Anesthesia: Determination of Ethyl Ether in Air and Blood, and its Distribution Ratio between B1ood and Air. J. Biol. Chem.57: 741 (1923).

  22. 22.

    Varley, H. Practical Clinical Biochemistry, 2nd ed. London: William Heinemann (1960).

  23. 23.

    Snedecor, G. W. Statistical Methods. 5th ed. Iowa: Iowa State College Press (1959).

  24. 24.

    Bunker, J. P.;Beecher, H. K.;Briggs, B. D.;Brewster, W. R.; &Barnes, B. A. Meta- bolic Effects of Anesthesia. II. A Comparison of Acid-Base Equilibrium in Man and in Dogs During Ether and During Cyclopropane Alnesthesia. J. Pharmacol. & Exp. Ther.102: 62 (1951).

  25. 25.

    Bhatia, B. B., &Burn, J. H. Action of Ether on the Sympathetic System. J. Physiol.78: 257 (1933).

  26. 26.

    Brewster, W. R., Bunker, J. P., &Beecher, H. K. Metabolic Effects of Anaesthesia. VI. Mechanisms of Metabolic Acidosis and Hyperglycemia during Ether Anesthesia in Dogs. Am. J. Physiol.171: 37 (1952).

  27. 27.

    Keeton, R. W., &Ross, E. L. Mechanism of Ether Hyperglycemia. Am. J. Physiol.48: 146 (1919).

  28. 28.

    Price, H. L.;Lurie, A. A.;Jones, R. E.;Price, M. L.; &Linde, H. W. Cyclopropane Anesthesia. II. Epinephrine and Norepinephrine In Initiation of Ventricular Arrhythmias by Carbon Dioxide Inhalation. Anesthesiology19: 619 (1958).

  29. 29.

    Hamelberg, W.;Sprouse, J. H.;Mahaffey, J. E. &Richardson, J. A. Catechol Amine Levels during Light and Deep Anesthesia. Anesthesiology21: 297 (1960).

  30. 30.

    Jørgensen, K., &Astrup, P. Standard Bicarbonate, Its Clinical Significance, and a New Method for its Determination. Scand. J. Clin. & Lab. Invest.9: 122 (1957).

  31. 31.

    King, B. D.;Harris, L. C;Greifenstein, F. E;Elder, J. D.; &Dripps, R. D. Reflex Circulatory Responses to Direct Laryngoscopy and Trachéal Intubation Performed during General Anesthesia. Anesthesiology12; 556 (1951).

  32. 32.

    Brown, G. L., &Gillespie, J. S. The Output of Sympathetic Transmitter from the Spleen of the Cat. J. Physiol.138: 81 (1957).

  33. 33.

    Price, H. L.;Linde, H. W.;Jones, R. E.;Black, G. W.; &Price, M. L. Sympatho-Adrenal Responses to General Anesthesia in Man and Their Relation to Hemodynamics. Anesthesiology20: 563 (1959).

  34. 34.

    Axelrod, J. Metabolism of Epinephrine and Other Sympathomimetic Amines. Physiol. Rev.39: 751 (1959).

  35. 35.

    Spector, S.;Kuntzman, R.;Shore, P. A.; &Brodie, B. B. Evidence for Release of Brain Amines by Reserpine in Presence of Monoamine oxidase Inhibitors: Implication of Monoamine oxidase in Norepinephrine Metabolism in Brain. J. Pharmacol.130: 256 (1960).

  36. 36.

    Rossi, G.’F., &Zirondoli, A. On the Mechanism of the Cortical Desynchronization Elicited by Volatile Anesthetics. EEG Clin. Neurophysiol.7: 383 (1955).

  37. 37.

    Schlag, J., &Brand, H. An Analysis of Electrophysiological Events in Cerebral Structures during Ether Anesthesia. EEG Clin. Neurophysiol.10: 305 (1958).

  38. 38.

    Domino, E. F., &Ueki, S. Differential Effects of General Anesthetics on Spontaneous Electrical Activity of Neocortical and Rhinencephalic Bra n Systems of the Dog. J. Pharmacol. & Exp. Ther.127: 288 (1959).

  39. 39.

    Vogt, M. Concentration of Sympathin in Different Parts of the Central Nervous System under Normal Conditions and after Administration of Drugs. J. Physiol.123: 451 (1954).

  40. 40.

    Brewster, W. R., Isaacs, J. P., &Wainø-Anderson, T. Depressant Effect of Ether on the Myocardium of the Dog and its Modification by Reflex Release of Epinephrine and Norepinephrine. Am. J. Physiol.175: 399 (1953).

  41. 41.

    McAllister, F. F., &Root, W. S. Circulatory Responses of Normal and Sympathectomized Dogs to Ether Anesthesia. Am. J. Physiol.133: 70 (1941).

  42. 42.

    Fenn, W. O., &Asano, T. Effects of Carbon Dioxide Inhalation on Potassium Liberation from the Liver. Amer. J. Physiol.185: 567 (1956).

  43. 43.

    Burn, J. H., &Rand, M. J. New Observations on the Sympathetic Postganglionic Mechanism. Amer. J. Med. 29: 1002 (1960).

  44. 44.

    Celander, O. The Range of Control Exercised by the Sympjathico-adrenal System. Acta Physiol. Scand. (suppl. 116) 32: (1954).

  45. 45.

    Outschoorn, A. S., &Vogt, M. The Nature of Cardiac Sympathin in the Dog. Brit. J. Pharmacol.7: 319 (1952).

  46. 46.

    Seligman, A. M.;Frank, F. A.;Alexander, B.; &Fine, J. Traumatic Shock. XV. Carbohydrate Metabolism in Haemorrhagic Shock in the Dog. J. Clin. Invest.26: 536 (1947).

  47. 47.

    Brewster, W. R.;Isaacs, J. P.;Osgood, P. F.; &King, T. L. The Hemodynamic and Metabolic Inter-relationship in the Activity of Epinephrine, Norepinephrine, and the Thyroid Hormones. Circulation13: 1 (1956).

  48. 48.

    Parkhouse, J., &Simpson, B. R. A Restatement of Anaesthetic Principles. Brit. J. Anaesth.31: 464 (1959).

  49. 49.

    Popplebaum, H. F. Rediscovery of Air for Anaesthesia in thoracic Surgery. Proc. Roy. Soc. Med.53: 188 (1959).

  50. 50.

    French, J. D., Verzeano, M., &Magoun, H. W. A Neural Basis of the Anesthetic State. Archiv. Neur. & Psych.69: 519 (1953).

  51. 51.

    Salmoiraghi, G. C., &Burns, B. Delisle. Localization and Patterns of Discharge of Respiratory Neurones in Brain-stem of Cat. J. Neurophysiol.23: 2 (1960).

  52. 52.

    Rothballer, A. B. Studies on toe Adrenaline-Sensitive Component of the Reticular Activating System. EEG Clin. Neurophysiol.8: 603 (1956).

  53. 53.

    Price, H. L. Circulating Adrenaline and Noradrenaline During Diethyl Ether Anaesthesia in Man. Clin. Science16: 377 (1957).

  54. 54.

    Liljestrand, G. The effects of Ethyl Alcohol and Some Related Substances on Baroreçeptor and Chemoreceptor Activity. Acta Physiol. Scand.29: 74 (1953).

  55. 55.

    Woods, E. F.;Richardson, J. A.;Richardson, A. K.; &Bozeman, R.F. Plasma Concentrations of Epinephrine and Arterenol Following the Actions of Various Agents on the Adrenals. J. Pharmacol. & Exp. Ther.116: 351 (1956).

  56. 56.

    Jones, R. E.;Guldmann, N.;Linde, H. W;Dripps, R. D.; &Price, H. L. Cyclopropane Anesthesia. III. Effects of Cyclopropane on Respiratioa and Circulation in Normal Man. Anesthesiology21: 380 (1960).

  57. 57.

    Habif, D. V.;Papper, E. M.;Fitzpatrick, H. F.;Lowrànce, P.;Smythe, C. McC; &Bradley, S. F. The Renal and Hepatic Blood Flow, Glomerular Filtration Rate aikd Urinary Output of Electrolytes during Cyclopropane, Ether, and Thiopental Anaesthesia, Operation and the Immediate Postoperative Period. Surgery80: 241 (1951).

  58. 58.

    Price, H. L., Conner, E. H., &Dripps, R. D. Concerning the Increase in Central Venous and Arterial Blood Pressures during Cyclopropane Anaesthesia in Man. Anesthesiology14: 1 (1953).

  59. 59.

    Dripps, R. D. The Immediate Decrease in Blood Pressure Seen at the Conclusion of Cyclopropane Anesthesia. “Cyclopropane Shock.” Anesthesiology8: 15 (1947).

  60. 60.

    Price, H. L.;Lurie, A. A.;Black, G. W.;Sechzer, P. H.;Linde, H. W.; &Price, M. L. Modification by General Anesthetics (Cyclopropane and Halothane) of Circulatory and Sympathoadrenal Responses to Respiratory Acidosis. Ann. Surg.152: 1071 (1960).

Download references

Author information

Correspondence to R. A. Millar or M. E. Morris.

Additional information

Awarded British Oxygen Canada Prize 1961.

Sir Edward W. Beatty Memorial Scholar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Millar, R.A., Morris, M.E. Sympatho-adrenal responses during general anaesthesia in the dog and man. Can. Anaes. Soc. J. 8, 356–386 (1961). https://doi.org/10.1007/BF03021356

Download citation

Keywords

  • Halothane
  • Cyclopropane
  • Ether Anaesthesia
  • Plasma Noradrenaline
  • Plasma Catecholamine