Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High concentrations of isoflurance do not block the sympathetic nervous system activation from desflurane

Abstract

Purpose: The volatile anesthetic desflurane has been associated with neurocirculatory responses that have been relatively refractory to adjuvant treatment. We have employed desflurane to evaluate the integrity of the sympathetic nerve recording after establishment of the anesthetized state with another anesthetic agent. This retrospective evaluation of data from volunteers determined if higher concentrations of isoflurane that were sufficient to block the neurocirculatory response to laryngeal and tracheal stimulation would abolish the neurocirculatory response to desflurane.

Methods: Data from eight, healthy, young volunteers met our criteria for inclusion. They had been anesthetized with propofol or thiopental and intubated after neuromuscular blockade. Each subject was monitored with radial artery blood pressure (BP), heart rate (HR)(ECG), and sympathetic microneurography. Isoflurane had been administered to achieve a steady state concentration of 1.5 MAC (minimum alveolar concentration) while oxygenation and carbon dioxide were monitored with pulse oximetry and infrared spectrometry, respectively. A deep level of anesthesia was confirmed when laryngoscopy and endotracheal tube movement failed to elicit a neurocirculatory response. A brief exposure to 11% desflurane in the inspired gas was then provided.

Results: The responses to desflurane included significant increases in HR, range 32–84 b/min, and BP, range 15–72 mm Hg (P<0.05). Sympathetic nerve activity increased substantially in the three volunteers with functional nerve recordings.

Conclusion: In healthy volunteers receiving 1.5 MAC isoflurane, which was sufficient to block the neurocirculatory response to laryngoscopy and tracheal stimulation, there were striking increases in sympathetic outflow, HR and BP when 11% desflurane was substituted for isoflurane.

Résumé

Objectif: L’anesthésique volatil desflurane a été associé à des réponses neurocirculatoires relativement réfractaires à un traitement adjuvant. Nous avons utilisé le desflurane pour évaluer l’intégrité du nerf sympathique après l’installation de l’anesthésie avec un autre anesthésique. La présente évaluation rétrospective de participants volontaires a cherché à déterminer si une concentration élevée d’isoflurane, suffisante pour bloquer la réponse neurocirculatoire à la stimulation laryngée et trachéale, pouvait abolir la réponse neurocirculatoire au desflurane.

Méthode: Huit jeunes volontaires en santé ont participé à l’étude. Ils ont été anesthésiés avec du propofol ou du thiopental et intubés après blocage neuromusculaire. Chaque patient a été surveillé par le monitorage de la tension de l’artère radiale (TA) et de la fréquence cardiaque (FC) (ECG) et par la microneurographie sympathique. L’isoflurane a été administré jusqu’à une concentration stationnaire de 1,5 CAM (concentration alvéolaire minimale) et l’oxygénation et le gaz carbonique ont été vérifiés par l’oxymétrie pulsée et la spectrométrie à infrarouge, respectivement. Un niveau profond d’anesthésie a été confirmé lorsque la laryngoscopie et le mouvement du tube endotrachéal n’ont pu provoquer de réponse neurocirculatoire. Les sujets ont été soumis ensuite à une brève exposition au desflurane à 11 % dans le gaz inspiré.

Résultats: Les réactions au desflurane comprennent des augmentations significatives de la FC, 32–84 b/min, et de la TA, 15–72 mmHg (P<0,05). L’activité du nerf sympathique a beaucoup augmenté chez les trois participants qui présentaient des enregistrements fonctionnels du nerf.

Conclusion: Chez des volontaires sains qui reçoivent 1,5 CAM d’isoflurane, dose suffisante pour empêcher la réponse neurocirculatoire à la laryngoscopie et à la stimulation trachéale, on a noté des hausses importantes de la décharge sympathique, de la FC et de la TA lorsque du desflurane à 11 % a été substitué à l’isoflurane.

References

  1. 1

    Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993; 79: 444–53.

  2. 2

    Ebert TJ, Muzi M, Lopatka CW. Neurocirculatory responses to sevoflurane in humans. A comparison to desflurane. Anesthesiology 1995; 83: 88–95.

  3. 3

    Moore MA, Weiskopf RB, Eger EI II,Noorani M, McKay L, Damask M. Rapid 1% increases of end-tidal desflurane concentration to greater than 5% transiently increase heart rate and blood pressure in humans. Anesthesiology 1994; 81: 94–8.

  4. 4

    Muzi M, Lopatka CW, Ebert TJ. Desflurane-mediated neurocirculatory activation in humans. Effects of concentration and rate of change on responses. Anesthesiology 1996; 84: 1035–42.

  5. 5

    Helman JD, Leung JM, Bellows WH, et al. The risk of myocardial ischemia in patients receiving desfluraneversus sufentanil anesthesia for coronary artery bypass graft surgery. Anesthesiology 1992; 77: 47–62.

  6. 6

    Pacentine GG, Muzi M, Ebert TJ. Effects of fentanyl on sympathetic activation associated with the administration of desflurane. Anesthesiology 1995; 82: 823–31.

  7. 7

    Devcic A, Muzi M, Ebert TJ. The effects of clonidine on desflurane-mediated sympatho-excitation in humans. Anesth Analg 1995; 80: 773–9.

  8. 8

    Weiskopf RB, Eger EI II,Noorani M, Daniel M. Fentanyl, esmolol, and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology 1994; 81: 1350–5.

  9. 9

    Bunting HE, Kelly MC, Milligan KR. Effect of nebulized lignocaine on airway irritation and haemodynamic changes during induction of anaesthesia with desflurane. Br J Anaesth 1995; 75: 631–3.

  10. 10

    Gormley WP, Murray JM, Trinick TR Intravenous lidocaine does not attenuate the cardiovascular and catecholamine response to a rapid increase in desflurane concentration. Anesth Analg 1996; 82: 358–61.

  11. 11

    Muzi M, Ebert TJ, Hope WG, Robinson BJ, Bell LB. Site(s) mediating sympathetic activation with desflurane. Anesthesiology 1996; 85: 737–47.

  12. 12

    Roizen MF, Horrigan RW, Frazer BM. Anesthetic doses blocking adrenergic (Stress) and cardiovascular responses to incision—MAC BAR. Anesthesiology 1981; 54: 390–8.

  13. 13

    Daniel M, Weiskopf RB, Noorani M, Eger EI II. Fentanyl augments the blockade of the sympathetic response to incision (MAC-BAR) produced by desflurane and isoflurane. Anesthesiology 1998; 88: 43–9.

  14. 14

    Kimura T, Watanabe S, Asakura N, Inomata S, Okada M, Taguchi M. Determination of end-tidal sevoflurane concentration for tracheal intubation and minimum alveolar anesthetic concentration in adults. Anesth Analg 1994; 79: 378–81.

  15. 15

    Wallin BG, Fagius J. Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol 1988; 50: 565–76.

  16. 16

    Berntson GG, Cacioppo JT, Quigley KS. Autonomic cardiac control. I. Estimation and validation from pharmacological blockades. Psychophysiology 1994; 31: 572–85.

  17. 17

    Weiskopf RB, Eger EI II,Daniel M, Noorani M. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology 1995; 83: 1173–8.

  18. 18

    Ebert TJ, Muzi M. Sympathetic activation with desflurane in humans.In: Advances in Pharmacology, Vol. 31: Anesthesia and Cardiovascular Disease. San Diego: Academic Press, 1994: 369–78.

  19. 19

    Weiskopf RB, Moore MA, Eger EI II,et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 1994; 80: 1035–45.

Download references

Author information

Correspondence to Thomas J. Ebert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ebert, T.J., Trotier, T.S., Arain, S.R. et al. High concentrations of isoflurance do not block the sympathetic nervous system activation from desflurane. Can J Anaesth 48, 133–138 (2001). https://doi.org/10.1007/BF03019725

Download citation

Keywords

  • Desflurane
  • Minimum Alveolar Concentration
  • Muscle Sympathetic Nerve Activity
  • Nerve Recording
  • Desflurane Anesthesia