Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Certain surfaces of voss and surfaces associated with them

This is a preview of subscription content, log in to check access.


  1. 1)

    L. Bianchi,Sopra una classe di superficie collegate alle congruente pseudosferiche [Rendiconti del Circolo Matematico di Palermo, t. XL (2° semestie 1915), pp. 110–152].

  2. 2)

    L. P. Eisenhart,Conjugate systems with equal Tangential Invariants and the Transformation of Moutard [Rendiconti del Circolo Matematico di Palermo, t. XXXIX (i° semestre 1915), pp. 153–176]. In what follows, this memoir will be referred to as M.

  3. 3)

    The formulas ot this section can be obtained from those of §§ I, 3, M, by taking σ = const.4) The results of this section follow from §§ 3, 5 and 6, M., when we take σ = σ1 = 1.

  4. 5)

    1. c.2) n° 86,

  5. 6)

    Cfr. 1. c. 2), n1 78-80.

  6. 7)

    1. C. 1).

  7. 8)

    G. Darboux,Leçons sur la théorie générale des surfaces, IIe partie (Paris, Gauthier-Villars, 1889), p. 383. For a full treatment of these transformations see the author’s paper:Deformatile Transformations of Ribaucour [Transactions of the American Mathematical Society, vol. XVII (1916), pp. 437-458]; from the first section of which we obtain the equations used in the present paper.

Download references

Author information

Correspondence to Luther Pfahler Eisenhart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisenhart, L.P. Certain surfaces of voss and surfaces associated with them. Rend. Circ. Mat. Palermo 42, 145–166 (1916).

Download citation