Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interleukin-10 and Interleukin-1 receptor antagonists increase during cardiac surgery



It has been reported that inflammatory cytokines such as interleukin-8 and 6 (IL-8, IL-6) increase during cardiac surgery and cause postoperative cardiac dysfunction. Therefore, it is important to investigate changes of suppressive cytokines such as IL-10, interleukin-4 (IL-4) and interleukin-1 receptor antagonist (IL-1 ra) dunng cardiac surgery.


Serum levels of cytokines and IL-1 ra were measured in 10 patients during cardiac surgery with cardiopulmonary bypass. Six blood samples were drawn after inducing anaesthesia. In each sample, serum IL-10, IL-4, IL-8, IL-6 and IL-1 ra were measured by enzyme linked immunosorbent assay.


Serum IL-6 and IL-8 concentration (19.1 ±8.8 pg · ml−1, and 13.4±5.2 pg · ml−1, preoperatively) increased to 227.5± 191 pg · ml−1 and 81.0±56 pg · ml−1 at 60 min after declamping the aorta (P< 0.01, respectively). Serum IL-10 concentration increased at 60 min after dedamping the aorta compared with the preoperative value (from 1.0±0 pg · ml−1 to 552.0± 158 pg · ml−1 P< 0.001]). Similarly, serum IL-1 ra concentration increased from the preoperative value of 1331±896 pg · ml−1 to 43353±12812 pg · ml−1 at 60 min after dedamping the aorta (P< 0.00l). Positive correlations were obtained between IL-10 and IL-8. and between IL-10 and IL-6 (γ=0.7, γ=0.8, P< 0.001, respectively).


These findings demonstrate that pro-and anti-inflammatory cytokines increase to maintain their balance during cardiac surgery.



On a rapporté que la concentration des cytokines de l’inflammation comme les interleukines 6 et 8 (IL-8. IL-6) s’élevaient pendant la chirurgie cardiaque et provoquaient des dérangements cardiaques postopératoires. II est donc aussi important d’examiner les perturbations produites par les cytokines suppressives comme IL-10, interleukine-4 (IL-4) et de l’antagoniste du récepteur de l’interleukine-1 (IL-1 ra) pendant la chirurgie cardiaque.


La concentration sérique des cytokines et de IL-1 ra a été mesurée chez dix patients pendant une chirurgie cardiaque sous CEC. Six échantillons de sang ont été prélevés après l’induction de l’anesthésie. Dans chacun des échantillons. on a titré IL-10, IL-4, IL-8, IL-6 et IL-1 ra avec l’épreuve de l’immuno-absorption enzymatique.


Les concentrations de IL-6 et de IL-8 (valeurs préopératoires : 19, 1 ±8, 8 pg · ml−1 et 13.4±5.2 pg · ml−1) ont augmenté à 227,45±191 pg · ml−1 et 81, 0±56 pg · ml−1 60 min après le dédampage de l’aorte (respectivement P< 0, 01 ). La concentration sérique de IL-10 a augmenté 60 min après le dédampage de l’aorte comparativement aux valeurs préopératoires (de 1.0±0 pg · ml−1 à 552± 158 pg · ml−1, P < 0.001). De la même façon, la concentration sérique de IL-1 ra a augmenté de la valeur préopératoire de 1331 ±896 pg · ml−1 à 4 3353± 1 2812 pg · ml−1 60 min après le dédampage (P < 0,001). La corrélation était positive entre IL-10 et IL-8 et entre IL-10 et IL-6 (respectivement γ=0.7, γ=0.8, P < 0,001).


Ces données montrent que les cytokines pro- et anti-inflammatoires augmentent pour maintenir leur équilibre pendant la chirurgie cardiaque.


  1. 1

    Butler J, Chong GL, Baigrie RJ, Pillai R, Westaby S, Rocker GM. Cytokine responses to cardiopulmonary bypass with membrane and bubble oxygenation. Ann Thorac Surg 1992; 53: 833–8.

  2. 2

    Kawamura T, Wakusawa R, Okada K, Inada K. Elevation of cytokines during open heart surgery with cardiopulmonary bypass: participation of interleukin 8 and 6 in reperfusion injury. Can J Anaesth 1993; 40: 1016–21.

  3. 3

    Paccaud J-P, Shifferli JA, Baggiolini M. NAP-1/IL-8 induces up-regulation of CR1 receptors in human neutrophil leukocytes. Biochem Biophys Res Comm 1990; 166: 187–92.

  4. 4

    Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170: 2081–95.

  5. 5

    Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol 1993; 11: 165–90.

  6. 6

    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–22.

  7. 7

    Yanagawa H, Sone S, Sugihara K, Tanaka K, Ogura T. Interleukin 4 down-regulates interleukin-6 production by human alveolar macrophages at protein and mRNA levels. Microbiol Immunol 1991; 35: 879–93.

  8. 8

    Sone S, Yanagawa H, Nishioka T, et al. Interleukin-4 as potent down-regulator for human alveolar macrophages capable of producing tumour necrosis factor- and interleukin-1. Eur Respir J 1992; 5: 174–81.

  9. 9

    Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G. Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 1993; 178: 2207–11.

  10. 10

    Cassatella MA, Meda L, Gasperini S, Calzetti F, Bonora S. Interleukin 10 (IL-10) up-regulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphnuclear leukocytes by delaying mRNA degradation. J Exp Med 1994; 179: 1695–9.

  11. 11

    Dinarello CA. Biology of Interleukin 1. FASEB J 1988; 2: 108–15.

  12. 12

    Kern JA, Lamb RJ, Reed JC, Daniele RP, Nowell PC. Dexamethasone inhibition of interleukin 1 beta production by human monocytes. Post-transcriptional mechanisms. J Clinical Invest 1988; 81: 237–44.

  13. 13

    Colotta F, Re F, Muzio M, et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261: 472–5.

  14. 14

    Arend WP, Joslin FG, Massoni RJ. Effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J Immunol 1985; 134: 3868–75.

  15. 15

    Dinarello CA, Wolff SM. The role of Interleukin —1 in disease. N Engl J Med 1993; 328: 106–13.

  16. 16

    Eisenberg SP, Evans RJ, Arend WP, et al. Primary structure and functional expression from complementary DNA of a human interleukin 1 receptor antagonist. Nature 1990; 343: 341–6.

  17. 17

    Seckinger P, Lowenthal JW, Williamson K, Dayer J-M, MacDonald HR. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol 1987; 139: 1546–9.

  18. 18

    McBride WT, Armstrong MA, Crockard AD, McMurray TJ, Rea JM. Cytokine balance and immunosuppressive changes at cardiac surgery: contrasting response between patients and isolated CPB cercuits. Br J Anaesth 1995; 75: 724–33.

  19. 19

    Girardin E, Roux-Lombard P, Grau GE, et al. Imbalance between tumour necrosis factor-alpha and soluble TNF receptor concentrations in severe meningococcaemia. Immunology 1992; 76: 20–3.

  20. 20

    Miller LC, Lynch EA, Isa S, Logan JW, Dinarello CA, Steere AC. Balance of synovial fluid IL-1 and IL-1 receptor antagonist and recovery from Lyme arthritis. Lancet 1993; 341: 146–8.

Download references

Author information

Correspondence to Takae Kawamura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kawamura, T., Wakusawa, R. & Inada, K. Interleukin-10 and Interleukin-1 receptor antagonists increase during cardiac surgery. Can J Anesth 44, 38–42 (1997).

Download citation


  • Cardiopulmonary Bypass
  • Aortic Occlusion
  • Human Alveolar Macrophage
  • Suppressive Cytokine
  • Inhibit Cytokine Production