Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Distribution of the number of joins between colored points on a lattice

  • 10 Accesses


Tables are presented showing the number of configurationsm ij of arrays of points (l×m×n) on a regular lattice, such thati points are black and (l m n−i) are white, and such that there arej pairs (joins) of neighboring points of different colors, for the arrays (4×4×1), (5×5×1), (6×6×1), and (3×3×3).


Se dan tablas que muestran el número de configuraciones de conjuntos de puntos(l×m×n) sobre una retícula regualr, tales quei puntos son negros y(lmn−i) son blancos y hayj pares de puntos adyacentes de diferentes colores, para los conjuntos (4×4×1), (5×5×1), (6×6×1) y (3×3×3).

This is a preview of subscription content, log in to check access.


  1. (1)

    S. G. Brush, “Statistical thermodynamics of mixtures, “Trans. Faraday Soc., Vol 54 (1958) p. 1781;J. Chem. Phys., Vol. 34 (1961) p. 1852.

  2. (2)

    S. G. Brush and G. L. Boer, “Additional distributions of the number of joins between colored points on a lattice, “University of California Lawrence Radiation Laboratory Report UCRL - 7021 (August 7, 1962).

  3. (3)

    E. A. Guggenheim,Mixtures, Oxford University Press, 1952.

  4. (4)

    S. Katsura and C. Katsura, “Cooperative phenomesa of finite systems II,Busseironkenkyu, No. 70(1954).

  5. (5)

    P.V. Krishna Iyer, “The theory of probability distributions of points on a lattice, “Ann. Math. Stat., Vol. 21 (1950), p. 198.

  6. (6)

    H. Levene, “A test of randomness in two dimensions, “Ann. Math. Stat., Vol. 17 (1946), p. 500.

  7. (7)

    P. A. Moran, “Random associations on a lattice, “Proc. Cambridge Phil. Soc., Vol. 43 (1947), p. 321.

  8. (8)

    L. Onsager, “Crystal statistics. I. A two-dimensional model with an order—disorder transition,Phys. Rev., Vol. 65 (1944), p. 117.

Download references

Author information

Correspondence to Stephen G. Brush.

Additional information

This work was performed under the auspices of the U. S. Atomic Energy Commission.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brush, S.G., Boer, G.L. Distribution of the number of joins between colored points on a lattice. Trab. Estad. Invest. Oper. 14, 191–195 (1963). https://doi.org/10.1007/BF03013703

Download citation


  • Regular Lattice
  • Neighboring Pair
  • Rectangular Array
  • Colored Point
  • Lawrence Radiation Laboratory