Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Terbutaline inhalation suppresses fentanyl-induced coughing

  • 366 Accesses

  • 59 Citations

Abstract

Purpose

To study the suppressive effect of inhalation of a selective β2-adrenergic bronchodilator terbutaline, and the effect of an intravenous anticholinergic, atropine, on fentanylinduced coughing.

Methods

We studied 131 ASA class I patients, aged 16–45 yr, scheduled for elective surgery, randomized into four groups. Fifteen minutes before bolus fentanyl (5 μg · kg−1, iv), patients inhaled either normal saline (4 ml; Croup 1, n = 30) or terbutaline (5 mg in 2 ml normal saline; Group 2, n = 34) via a jet nebulizer. After inhalation of normal saline, patients in Group 3 (n = 32) received sterile water iv instead of fentanyl. Patients in Group 4 (n = 35) were pretreated with atropine (0.01 mg · kg−1, iv) 10 min before iv fentanyl bolus. The onset, frequency and intensity of cough were observed immediately by an anaesthetist blinded to the study.

Results

The cough frequency was higher in Groups 1 (43%) and 4 (46%) than in Groups 2 (3%) and 3 (0%) (P < 0.05). The onset time and intensity of cough showed no difference among groups. No truncal rigidity was observed in patients receiving fentanyl bolus iv. The blood pressure, heart rate, and peripheral oxygen saturation did not change in Groups 1, 2, and 3, while patients in Group 4 showed an increase in heart rate (25.5 ± 15.2%).

Conclusions

The inhalation of a selective β2-adrenergic bronchodilator, terbutaline, effectively inhibited fentanylinduced cough, whereas atropine, an antimuscarinic vagolytic, had no efficacy. Our results suggest that bronchoconstriction may underlie the mechanism on fentanyl-induced cough.

Résumé

Objectif

Étudier l’effet inhibiteur sur la toux induite par le fentanyl de l’inhalation d’un bronchodilatateur sélectif β2adrénergique, la terbutaline et d’un anticholinergique intraveineux, l’atropine.

Méthodes

L’étude portait sur 131 patients ASA 1, âgés de 16 à 45 ans, programmés pour une chirurgie non urgente et répartis aléatoirement entre quatre groupes. Quinze minutes avant l’administration d’un bolus de fentanyl (5 μg · kg−1, iv), les patients inhalaient soit du sol.phys. (4 ml; groupe 1, n = 30), soit de la terbutaline (5 ml dans 2 ml de sol.phys.; groupe 2, n = 34) par nébulisation. Après avoir inhalé du sol.phys., les patients du groupe 3 (n = 32) recevaient de l’eau stérile iv à la place du fentanyl. Les patients du groupe 4 (n = 35) étaient prétraités à l’atropine (0,01 mg · kg−1, iv) 10 min avant le bolus de fentanyl iv. Le début, l’intensité et la fréquence de la toux étaient observés immédiatement par un anesthésiste neutre.

Résultats

La fréquence de la toux était plus élevée dans les groupes 1 (43%) et 4 (46%) que dans le groupe 2 (3%) et 3 (0%) (P < 0,05). Le moment du début et l’intensité de la toux ne différaient pas entre les groupes. On n’a pas observé de rigidité tronculaire chez les patients recevant le bolus de fentanyl iv. La pression artérielle, la fréquence cardiaque et la saturation périphérique en oxygène n ’ont pas changé dans les groupes 1, 2 et 3, alors que dans le groupe 4, la fréquence cardiaque augmentait (25,5 ± 15,2%).

Conclusion

L’inhalation du bronchodilatateur β2-adrénergique, terbutaline, inhibe efficacement la toux induite par le fentanyl, alo,rs que l’atropine, un vagolytique antimuscarinique n ’a pas cet effet. Ces résultats suggèrent que la bronchoconstriction pourrait être à l’origine de la toux induite par le fentanyl.

References

  1. 1

    Bailey PL, Stanley TH. Intravenous opioid anesthetics. In: Miller RD (Ed.). Anesthesia. New York: Churchill Livingstone, 1994: 308–9.

  2. 2

    Bohrer H, Fleischer F, Werning P. Tussive effect of a fentanyl bolus administered through a central venous catheter. Anaesthesia 1990; 45: 18–21.

  3. 3

    Phua WT, Teh BT, Jong W, Lee TL, Tweed WA. Tussive effect of a fentanyl bolus. Can J Anaesth 1991; 38: 330–4.

  4. 4

    Milton JS, Tsokos JO. Statistical Methods in the Biological and Health Sciences. Japan; McGraw-Hill Inc., 1983: 456.

  5. 5

    Daskalopoulos NT, Laubie M, Schmitt H. Localization of the central sympatho-inhibitory effect of a narcotic analgesic agent, fentanyl, in cats. Eur J Pharmacol 1975; 33: 91–7.

  6. 6

    Inoue K, Samodelov LF, Arndt JO. Fentanyl activates a particular population of vagal efferents which are cardioinhibitory. Naunyn Schmiedebergs Arch Pharmacol 1980; 312: 57–61.

  7. 7

    Reitan JA, Stengen KB, Wymore ML, Martucci RW. Central vagal control of fentanyl-induced bradycardia during halothane anesthesia. Anesth Analg 1978; 57: 31–6.

  8. 8

    Aviado DM. Regulation of bronchomotor tone during anesthesia. Anesthesiology 1975; 42: 68–80.

  9. 9

    Karlsson J-A, Sant’Ambrogio G, Widdicombe J. Afferent neural pathways in cough and reflex bronchoconstriction. J Appl Physiol 1988; 65: 1007–23.

  10. 10

    Chausow AM, Banner AS. Comparison of tussive effects of histamine and methacholine in humans. J Appl Physiol 1983; 55: 541–6.

  11. 11

    Vidruk EH, Hahn HL, Nadel JA, Sampson SR. Mechanisms by which histamine stimulates rapidly adapting receptors in dog lungs. J Appl Physiol 1977; 43: 397–402.

  12. 12

    Flacke JW, Flacke WE, Bloor BC, Van Etten AP, Kripke BJ. Histamine release by four narcotics: a double-blind study in humans. Anesth Analg 1987; 66: 723–30.

  13. 13

    Stellato C, Cirillo R, de Paulis A, et al. Human basophil/mast cell releasability. IX. Heterogeneity of the effects of opioids on mediator release. Anesthesiology 1992; 77: 932–40.

  14. 14

    Barnes PJ. Neural control of airway smooth muscle. In: Crystal RG, West JB (Eds.). The Lung: Scientific Foundations. New York: Raven Press, 1991: 903–15.

  15. 15

    Lou Y-P. Regulation of neuropeptide release from pulmonary capsaicin-sensitive afferents in relation to bronchoconstriction. Acta Physiol Scand 1993; (Suppl 612) 62: 1–88.

  16. 16

    Karlsson J-A, Lanner A-S, Persson CGA. Airway opioid receptors mediate inhibition of cough and reflex bronchoconstriction in guinea pigs. J Pharmacol Exper Ther 1990; 252: 863–8.

  17. 17

    Paintal AS. Mechanism of stimulation of type J pulmonary receptors. J Physiol 1969; 203: 511–32.

  18. 18

    Sant’Ambrogio FB, Sant’Ambrogio G. Circulatory accessibility of nervous receptors localized in the tracheobronchial tree. Respir Physiol 1982; 49: 49–73.

  19. 19

    Coleridge HM, Coleridge JCG. Reflexes evoked from tracheobronchial tree and lungs. In: Cherniack NS, Widdicombe JG (Eds.). Handbook of Physiology. The Respiratory System: Control of Breathing. Vol. II (part I). Bethesda, MD: Am Physiol Soc, 1986: 395–429.

  20. 20

    Tatar M, Webber SE, Widdicombe JG. Lung C-fibre receptor activation and defensive reflexes in anaesthetised cats. J Physiol 1988; 402: 411–20.

  21. 21

    Yasuda I, Hirano T, Yusa T, Satoh M. Tracheal constriction by morphine and by fentanyl in man. Anesthesiology 1978; 49: 117–9.

  22. 22

    Mills JE, Sellick H, Widdicombe JG. Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug-induced broncho-constrictions. J Physiol 1969; 203: 337–57.

  23. 23

    Sant’Ambrogio G, Remmers JE, De Groot WJ, Callas G, Mortola JP. Localization of rapidly adapting receptors in the trachea and main stem bronchus of the dog. Respir Physiol 1978; 33: 359–66.

  24. 24

    Shapiro GG, Furukawa CT, Pierson WE, Sharpe MJ, Menendez R, Bierman CW. Double-blind evaluation of nebulized cromolyn, terbutaline, and the combination for childhood asthma. J Aller Clin Immunol 1988; 81: 449–54.

  25. 25

    Ellul-Micallef R. Effect of terbutaline sulphate in chronic “allergic” cough. BMJ 1983; 287: 940–3.

  26. 26

    Pounsford JC, Birch MJ, Saunders KB. Effect of bronchodilators on the cough response to inhaled citric acid in normal and asthmatic subjects. Thorax 1985; 40: 662–7.

  27. 27

    Scanlan CL. Emergency life support. In: Scanlan CL, Spearman CB, Sheldon RL (Eds.). Eqan’s Fundamentals of Respiratory Care, 6th ed. New York: Mosby-Year Book Inc., 1995: 518.

  28. 28

    Newman SP. Therapeutic aerosols. In: Clarke SW, Pavia D (Eds.). Aerosols and the Lung: Clinical and Experimental Aspects. London: Butterworths, 1984: 197–223.

  29. 29

    Braga PC. Centrally acting opioid drugs. In: Braga PC, Allegra L (Eds.). Cough. New York: Raven Press Ltd., 1989: 109–43.

  30. 30

    Pounsford J. Cough and bronchoconstriction. Bulletin Europeen Physiopathologie Respiratoire 1987; 23: 37s-40s.

  31. 31

    Stanley TH. Cardiovascular effects of droperidol during enflurane and enflurane-nitrous oxide anaesthesia in man. Can Anaesth Soc J 1978; 25: 26–30.

  32. 32

    Sheppard R, Rizk NW, Boushey HA, Bethel RA. Mechanism of cough and bronchoconstriction induced by distilled water aerosol. Am Rev Respir Dis 1983; 127: 691–4.

  33. 33

    Fuller RW, Collier JG. Sodium cromoglycate and atropine block the fall in FEV1 but not the cough induced by hypotonic mist. Thorax 1984; 39: 766–70.

Download references

Author information

Correspondence to Lui Ping-Wing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ping-Wing, L., Chung-Hsi, H. & Ya-Churn, C. Terbutaline inhalation suppresses fentanyl-induced coughing. Can J Anaesth 43, 1216 (1996). https://doi.org/10.1007/BF03013427

Download citation

Key words

  • analgesics: fentanyl
  • cough
  • sympathetic nervous system: beta-adrenergic agonists, terbutaline
  • parasympathetic nervous system: atropine