Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Etude des mécanismes neurobiologiques de la dépendance aux opiacés

  • 6 Accesses


Les mécanismes neurobiologiques de la dépendance aux opiacés, comme pour toutes les drogues addictives, sont mal connus.

Les effets de renforcement positif des opiacés (effets «hédoniques»), tenus pour responsables de la dépendance psychique, impliquent les récepteurs opiacés de l'aire tegmentale ventrale et du noyau accumbens, ainsi que l'activation du système dopaminergique mésolimbique. Mais d'autres structures sont également en cause.

Lors d'une consommation prolongée les circuits neurobiologiques du renforcement positif sont le siège de phénomènes adaptatifs, opposés aux effets des opiacés, et responsables de la tolérance ainsi que des effets aversifs du sevrage.

Les opiacés ont en outre des effets de renforcement négatif (sédation de la douleur morale) dont le substratum neurobiologique n'est pas connu.

Les structures (substance grise périaqueducale, Locus Coeruleus, complexe amygdalien) et les mécanismes de la dépendance physique sont différents de ceux du renforcement positif.

Au niveau des neurones exposés de manière prolongée aux opiacés on peut également observer tolérance et/ou dépendance.

La spécificité régionale de ces phénomènes cellulaires, leur possible dissociation, leurs mécanismes précis ne sont pas expliqués.

En outre deux questions fondamentales restent posées:

  • • Comment les réseaux neuronaux de la dépendance physique et ceux de la dépendance psychique encodent-ils ces phénomènes comportementaux à partir des signaux élémentaires, cellulaires, que leurs délivrent les récepteurs opiacés?

  • • Pourquoi tolérance et dépendance sont-elles le fait des consommations toxicomaniaques d'opiacés et ne s'observentelles pas lorsqu'ils sont correctement utilisés comme analgésiques?


The neurobiological basis for dependence on opiates, as for all the other addictive drugs, is not well known.

The positive reinforcement effects (or «hedonic» effects), considered as accountable for psychical dependence, involve opiates receptors in Tegmental Ventral Area and Nucleus Accumbens and activation of the mesolimbic dopaminergic pathway. But other structures are concerned.

For a sustained consumption, adaptative processes expand in the circuits of positive reinforcement, opposite of the opiates effects and they are accountable for tolerance and adversive effects of withdrawal.

Moreover opiates have direct effects of negative reinforcement (sedation of moral pain) for which the neurobiological substratum is unknown.

Structures (Locus Coeruleus, amygdaloid complex, Periaqueducal Gray) and mecanisms of physical dependence are different from these of positive reinforcement.

At neuronal level, dependence and/or tolerance can be observed. But their precise mecanisms, their possible dissociation, their regional specificity remain unexplained.

Two essential questions have still no answers

  • • How do the circuits of positive reinforcement and physical dependence encode these behaviors from cellular signals mediated by opiates receptors?

  • • Why are tolerance and dependence only observed when opiates are used by drug addicts and not when they are correctly prescribed to pain patients?

This is a preview of subscription content, log in to check access.


  1. 1.

    Aghajanian G.K.: Tolerance of Locus Coeruleus neurons to morphine and suppression of withdrawal response by clonidine.Nature 276, 186–188, 1978.

  2. 2.

    Aghajanian G.K. andWang Y.Y.: Pertussis toxin blocks the outward currents evoked by opiate and alpha-2 agonists in Locus Coeruleus neurons.Brain Res. 371, 390–394, 1986.

  3. 3.

    Aghajanian G.K. andWang Y.Y.: Common alpha-2 and opiate effector mechanisms in the Locus Coeruleus intracellular studies in brain slices.Neuropharmacol. 26, 789–800, 1987.

  4. 4.

    Alexopoulos G.S. Inturrisi C.E., Lipman R., Frances R., Haycos J., Dougherty J.H. andRossier J.: Plasma immunoreactive beta-endorphine levels in depression: effect of electroconvulsive therapy.Arch. Gen. Psychiatry 40, 181–183, 1983.

  5. 5.

    Andrade R., Vandermaelen C.P. andAghajanian G.K.: Morphine tolerance and dependence in the Locus Coeruleus: single cell studies in brain slices.Eur. J. Pharmacol. 91, 161–169, 1983.

  6. 6.

    Besson J.M. andChaouch A.: Peripheral and spinal mechanisms of nociception.Physiol. Rev. 67, 67–186, 1987.

  7. 7.

    Bielajew C. andShizgal P.: Evidence implicating descending fibers in self-stimulation of the medial forebrain bundle.J. Neurosci 6, 919–929, 1986.

  8. 8.

    Bozarth M.A.: Neural basis of psychomotor stimulant and opiate reward: evidence suggesting in involvement of a common dopaminergic system.Behav. Brain Res. 22, 107–116, 1986.

  9. 9.

    Bozarth M.A. andWise R.A.: Anatomically distinct opiate receptor fields mediate reward and physical dependence.Science 224, 516–517, 1984.

  10. 10.

    Brady L.S., Herkenham M., Long J.B. andRothman R.B.: Chronic morphine increases u-opiate receptor binding in rat brain: a quantitative autoradiographic study.Brain Res. 477, 382–386, 1989.

  11. 11.

    Broekkamp C.L.E., Van Den Boggard J.H., Heijnen H.J., Rops R.H., Cools A.R. andVan Rossum J.M.: Separation of inhibiting and stimulating effects of morphine on self-stimulation behavior by intracerebral microinjections.Eur. J. Pharmac. 36, 443–446, 1976.

  12. 12.

    Calvino B., Levesque G. andBesson J.M.: Possible involvement of amygdaloid complex in morphine analgesia as studied by electrolytic lesions in rats.Brain Res. 233, 221–226, 1982.

  13. 13.

    Calvino B., Lagowska J. andBen-Ari Y: Morphine withdrawal syndrome: differential participation of structures located within the amygdaloid complex and striatum of the rat.Brain Res. 177, 19–34, 1979.

  14. 14.

    Childress A.R., McLellan A.T. andO'Brien C.P.: Role of conditioning factors in the development of drug dependence.Psych. Clin. N. Am. 9, 413–425, 1986.

  15. 15.

    Chneiweiss H., Glowinski J. andPremont J.: Mu and delta opiate receptors coupled negatively to adenylate cyclase on embryonic neurons from the mouse striatum in primary cultures.J. Neurosci 8, 3376–3382, 1988.

  16. 16.

    Collier H.O.J. andFrancis D.L.: Morphine abstinence is associated with increased brain cyclic AMP.Nature 255, 159–162, 1975.

  17. 17.

    Collier H.O.J., Francis D.L., McDonald-Gibson W.J., Roy A.C. andSaeed S.A.: Prostaglandins, cyclic AMP and the mechanism of opiate dependence.Life Sci. 17, 85–90, 1975.

  18. 18.

    Collier H.O.J. andRoy A.C.: Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate.Nature 248, 24–27, 1974.

  19. 19.

    Crain C.M., Crain B. andPeterson E.R.: Cyclic AMP or forskolin rapidly attenuates the depressant effects of opioids on sensory evoked dorsal-horn responses in mouse spinal cord-ganglion explants.Brain Res. 370, 61–72, 1986.

  20. 20.

    Danks J.A., Tortella F.C., Bykov V., Jacobson A.E., Rice K.C., Holaday J.W. andRothman R.B.: Chronic administration of morphine and naltrexone up-regulate (3H)D-ala2, D-leu5) enkephalin binding sites by different mechanisms.Neuropharmacol 27, 965–974, 1988.

  21. 21.

    Devoize J.L., Rigal F., Eschalier A. andTrolese, J.F.: Naloxone inhibits clomipramine in mouse forced swimming test.Eur. J. Pharmacol. 78, 229–231, 1982.

  22. 22.

    Duggan A.W. andNorth R.A.: Electrophysiology of opioids.Pharmacol. Rev. 35, 219–281, 1983.

  23. 23.

    Eddy N.B., Halbach H., Isbell H. andSeevers M.H.: Drug dependence, its significance and characteristics.Bull World Health Organization 32, 721–733, 1965.

  24. 24.

    Fibiger H.C., Le Piane F.G., Jakubovic A. andPhillips A.G.: The role of dopamine in intracranial self-stimulation of the ventral tegmental area.J. Neurosci 7, 3888–3896, 1987.

  25. 25.

    Gallistel C.R., Boytim M., Gomita Y. andKlebanoff L.: Does pimozide block the reinforcing effect of brain stimulation?Pharmac. Biochem. Behav. 17, 769–781, 1982.

  26. 26.

    Gerber G.J., Bozarth M.A. andWise R.A.: Small-dose intravenous heroin facilitates hypothalamic self-stimulation without response suppression in rats.Life Sci 28, 557–562, 1981.

  27. 27.

    Goeders N.E., Lane J.D. andSmith J.E.: Self-administration of methionine enkephalin into the nucleus accumbens.Pharmacol. Biochem. Behav. 20, 451–455, 1984.

  28. 28.

    Gysling K. andWang R.Y.: Morphine-induced activation of A10 dopamine mine neurons in the rat.Brain Res. 277, 119–127, 1983.

  29. 29.

    Hand T.H., Koob G.F., Stimus L. andLe Moal M.: Aversive properties of opiate receptor blockade: evidence for exclusively central mediation in naive and morphine-dependent rats.Brain Res. 474, 364–368, 1988.

  30. 30.

    Haynes L.: Opioid receptors and signal transduction.T.I.P.S. 9, 309–311, 1988.

  31. 31.

    Herman B.H. andPanksepp J.: Ascending endorphin inhibition of distress vocalization.Science 211, 1060–1062, 1981.

  32. 32.

    Hinson R.E. andSiegel S.: Nonpharmacological bases of drug tolerance and dependence.J. Psychosomatic Research 26, 495–503, 1982.

  33. 33.

    Inturrisi C.E., Alexopoulos G., Lipman R., Foley K. andRossier J.: Beta-endorphin immunoreactivity in the plasma of psychiatric patients receiving electroconvulsive treatment.Ann. NY. Acad. Sci. 398, 413–423, 1982.

  34. 34.

    Kalin N.H., Shelton S.E. andBarksdale C.M.: Opiate modulation of separation-induced distress in non-human primates.Brain Res. 440, 285–292, 1988.

  35. 35.

    Kalivas P.W., Widerlov E., Stanley D., Breese G.R. andPrange A.J.: Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity.J. Pharmacol. Exp. Ther. 227, 229–237, 1983.

  36. 36.

    Koob G.F. andBloom F.E.: Cellular and molecular mechanisms of drug dependence.Science 242, 715–723, 1988.

  37. 37.

    Koob G.F., Pettit H.O., Ettenberg A. andBloom F.E.: Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat.J. Pharmacol. Exp. Ther 229, 481–486, 1984.

  38. 38.

    Koob G.F., Vaccarino F., Amalric M. andBloom F.E.: Positive reinforcement properties of drugs: the search for neural substrates.In:Brain Reward Systems and Abuse. Raven Press, New York, p. 152–173, 1989.

  39. 39.

    Lyness W.H., Friedle N.M. andMoore K.E.: Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration.Pharmac. Biochem. Behav. 11, 553–556, 1979.

  40. 40.

    Mackey W.B. andVan der Kooy D.: Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning.Pharmacol. Biochem. Behav. 22, 101–105, 1985.

  41. 41.

    Maddux J.F. andDesmond D.P.: Residence relocation inhibits opioid dependence.Arch. Gen. Psychiatr. 39, 1313–1317, 1982.

  42. 42.

    Martin W.R.: Pharmacology of opioids.Pharmacol. Rev. 35, 283–323, 1983.

  43. 43.

    Mele A., Glue P. andPert A.: Opiate modulation of dopamine release in the striatum and nucleus accumbens as revealed with microdialysis procedures.Soc. Neurosci. Abstr., 461. 12, 18th meeting, 1988.

  44. 44.

    Melzack R.: The tragedy of needless pain: a call for social action.Pain Res. and Clin. Management 3, 1–11, 1988.

  45. 45.

    Moises A.C. andSmith C.B.: Changes in cortical beta-adrenergic receptor density and neuronal sensitivity to norepinephrine accompany morphine dependence and withdrawal.Brain Res. 400, 110–126, 1987.

  46. 46.

    Nestler E.J., Erdos J.J., Terwilliger R., Duman R.S. andTallman J.F.: Regulation of G proteins by chronic morphine in the rat Locus Coeruleus.Brain Res. 476, 230–239, 1989.

  47. 47.

    North R.A. andWilliams J.T.: How do opiates inhibit neurotransmitter release?T.I.N.S. 6, 337–339, 1983.

  48. 48.

    Olds M.E.: Reinforcing effects of morphine in the nucleus accumbens.Brain Res. 237, 429–440, 1982.

  49. 49.

    Panksepp J. Herman B.H., Vilberg T., Bishop P. andDeeskinazi F.G.: Endogenous opioids and social behavior.Neurosci. Rev. 4, 473–487, 1980.

  50. 50.

    Pert A. andSivit C.: Neuroanatomical focus for morphine and enkephalin-induced hypermotility.Nature 265, 645–647, 1977.

  51. 51.

    Pettit H.O., Ettenberg A., Bloom F.E. andKoob G.F.: Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats.Psychopharmacol. 84, 167–173, 1984.

  52. 52.

    Pickar D., Cutler N.R., Naber D., Post R.M., Pert C.B. andBunney W.E.: Plasma opioid activity in manic-depressive illness.Lancet 1, 937, 1980.

  53. 53.

    Roberts D.C.S. andKoob G.: Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats.Pharmac. Biochem. Behav. 17, 901–904, 1982.

  54. 54.

    Rodgers R.J.: Elevation of aversive threshold in rats by intra amygdaloid injection of morphine sulfate.Pharmacol. Biochem. Behav. 6, 385–390, 1977.

  55. 55.

    Rothman R.B., Bykov V., Long J.B., Brady L.S., Jacobson A.E., Rice K.C. andHoladay J.W.: Chronic administration of morphine and naltrexone up-regulate u-opioid binding sites labeled by (3H)(D-ala2mephe4, gly-ol5) enkephalin: further evidence for two u-binding sites.Eur. J. Pharmacol. (in press).

  56. 56.

    Rothman R.B., Danks J.A., Jacobson A.E., Burke T.R., Rice K.C., Tortella F.C. andHoladay J.W.: Morphine tolerance increases u-noncompetitive delta binding sites.Eur. J. Pharmacol. 124, 113–119, 1986.

  57. 57.

    Siegel S.: Drug anticipation and drug tolerance.In: The Psychopharmacology of Addiction; Lader M. Ed., Oxford University Press, p. 73–96, 1988.

  58. 58.

    Spyraki C.: Drug reward studied by the use of place conditioning in rats.In: The Psychopharmacology of Addiction; Lader M. Ed., Oxford University Press. p. 97–114, 1988.

  59. 59.

    Stewart J.: Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area.Pharmacol. Biochem. Behav. 20, 917–923, 1984.

  60. 60.

    Stewart J. andVezina P.: A comparison of the effects of intraaccumbens injections of amphetamine and morphine on reinstatement of heroin intravenous self-administration behavior.Brain Res. 457, 287–294, 1988.

  61. 61.

    Terenius L.: Opiate tolerance and dependance: roles of receptors and endorphine.In:Research advances in alcohol and drug problems; Smart R.G., Capell H.D., Glaser F.B. et coll. Eds, Plenum Press, New York, 1–21, 1984.

  62. 62.

    Vaccarino F.J., Pettit H.O., Bloom F.E. andKoob G.F.: Effects of intracerebroventricular administration of methylnaloxonium chloride on heroin self-administration in the rat.Pharmacol. Biochem. Behav. 23, 495–498, 1985a.

  63. 63.

    Vaccarino F.J., Bloom F.E. andKoob G.F.: Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat.Psychopharmacol. 86, 37–42, 1985b.

  64. 64.

    Vezina P., Kalivas P.W. andStewart J.: Sensitization occurs to the locomotor effects of morphine and the specific u-opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens.Brain Res. 417, 51–58, 1987.

  65. 65.

    West T.E.G. andWise R.A.: Relative effects of naloxone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation in the rat.Soc. Neurosci. Abstr. 12, 931, 1986.

  66. 66.

    Yokel R.A. andWise R.A.: Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats.Psychopharmacol. 48, 311–318, 1976.

  67. 67.

    Zhao Z.Q. andDuggan A.W.: Clonidine and the hyper-responsiveness of dorsal horn neurones following morphine withdrawal in the spinal cat.Neuropharmacol. 26, 1499–1502, 1987.

Download references

Author information

Correspondence to H. Ollat.

About this article

Cite this article

Ollat, H. Etude des mécanismes neurobiologiques de la dépendance aux opiacés. Doul. et Analg. 2, 51–60 (1989). https://doi.org/10.1007/BF03013057

Download citation

Key words

  • Opiates
  • tolerance
  • dependence
  • reinforcement
  • withdrawal
  • neurobiological bases