Superoxide radical generation and histopathological changes in hippocampal CA1 after ischaemia/ reperfusion in gerbils

  • Shigeki Yamaguchi
  • Hiromaru Ogata
  • Shinsuke Hamaguchi
  • Toshimitsu Kitajima
Laboratory Reports



We investigated the relationship between the generation of Superoxide radicals and histopathological changes on delayed neuronal death in the hippocampal CA1 subfield.


Seventy gerbils were randomly assigned to two groups, a sham group and an ischaemia/reperfusion (I/R) group. In the I/R group, transient forebrain ischaemia was induced by occluding the bilateral common carotid arteries for four minutes. The cerebrum was removed after reperfusion at intervals of one minute, six, twelve and twenty-four hr and at three, five and seven days. Each forebrain was cut into two portions including the hippocampus. The quantity of Superoxide radicals was measured by using chemiluminescence, and histopathological changes in the hippocampal CAI subfield were examined.


In the I/R group, Superoxide radicals increased on the 3rd and 5th days compared with the sham group (16.1 ±3.4vs3.2± 1.0 on the third day (P < 0.0001 ); 10.9 ± 1.9 vs 3.3 ± 0.8 on the fifth day (P < 0.0001)). In the I/R group, the pyramidal cells were atrophic and pycnotic; vacuolation, and structural disruption of the radial striated zone were observed from the third through the seventh day. In the sham group, these changes were not observed. There were differences of degenerative ratios in the pyramidal cells between the two groups from the third to seventh days (5.6 ± 2.0 vs 80.9 ± 3.3 on the third day (P < 0.05); 6.9 ± 0.4 vs 93.6 ± 2.4 on the fifth day (P < 0.05); 6.2 ± 1.5 vs 95.0 ± 1.3 on the seventh day (P < 0.05)).


There is a correlation between the generation of Superoxide radicals and histopathological changes of the pyramidal cells in the hippocampal CAI subfield.


Neuronal Death Sham Group Superoxide Radical Pyramidal Cell Histopathological Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Investiguer la relation entre la production des radicaux superoxydes et les changements histopathologiques sur le décès neuronal retardé dans le champ hippocampique CAL.


Soixante-dix gerbilles ont été aléatoirement réparties en 2 groupes, un groupe contrôle et un groupe ischémie/reperfusion (I/R). Dans le groupe I/R, une ischémie transitoire du prosencéphale était induite par l’occlusion bilatérale des carotides communes pour quatre minutes. Après reperfusion, le cerveau était retiré de l’animal après une minute de même qu’à six, douze et vingt-quatre heures ainsi qu’à trois, cinq et sept jours. Chaque prosencéphale était coupé en deux parties incluant l’hippocampe. La quantité de radicaux superoxydes était mesurée par chemiluminescence et les changements histopathologiques dans le champ hippocampique CAI étaient observés.


Dans le groupe I/R, les radicaux superoxydes ont augmenté aux jours 3 et 5 comparativement au groupe témoin (16,1 ±3,4 vs 3,2± 1,0 au jour 3 (P< 0,000l); 10,9 ± 1,9 vs 3,3 ± 0,8 au jour 5 (P< 0,000l)). Dans le groupe I/R, les cellules pyramidales étaient atrophiques et picnotiques; du 3e au 7e jour, on a observé de la vacuolisation et de la destruction structurale de la zone striée radiaire, et ces changements n’ont pas été retrouvés dans le groupe témoin. On a observé des différences dans le pourcentage dégénératif des cellules pyramidales entre les deux groupes à partir du jour 3 au jour 7 (5,6 ± 2,0 vs 80,9 ± 3,3 au jour 3 (P< 0,05); 6,9 ± 0,4 vs 93,6 ± 2,4 au jour 5 (P< 0,05); 6,2 ± 1,5vs 95,0 ± 1,3 au jour 7 (P< 0,05)).


Il y a une corrélation entre la production de radicaux superoxydes et les changements histopathologiques des cellules pyramidales du champ CAI de l’hippocampe.


  1. 1.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605.PubMedGoogle Scholar
  2. 2.
    Kogure K, Watson BD, Busto R, Abe K. Potentiation of lipid peroxides by ischemia in rat brain. Neurochem Res 1982; 7: 437–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Watson BD, Busto R, Goldberg WJ, Santiso M, Toshida S, Ginsberg MD. Lipid peroxidationin vivo induced by reversible global ischemia in rat brain. J Neurochem 1984; 42: 268–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Cao W, Carney JM, Duchon A, Floyd RA, Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 1988; 88: 233–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Imaizumi S, Tominaga T, Uenohara H, Yoshimoto T, Suzuki J, Fujita Y. Initiation and propagation of lipid peroxidation in cerebral infarction models. Neurol Res 1986; 8: 214–20.PubMedGoogle Scholar
  6. 6.
    Asano T, Johshita H, Koide T, Takakura K. Amelioration of ischemic cerebral oedema by a free radical scavenger, AVS; l,2-bis(nicotinamido)-propane. An experimental study using a regional ischaemia model in cats. Neurol Res 1984; 6: 163–8.PubMedGoogle Scholar
  7. 7.
    Hall ED. Free radicals and CNS injury. Crit Care Clin 1989; 5: 793–805.PubMedGoogle Scholar
  8. 8.
    Southorn PA, Powis G. Free radicals in medicine. I. Chemical nature and biologic reactions. Mayo Clin Proc 1988; 63: 381–9.PubMedGoogle Scholar
  9. 9.
    Hall ED, Pazara KE, Braughler JM. 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 1988; 19: 997–1002.PubMedGoogle Scholar
  10. 10.
    Hall ED, Yonkers PA. Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 1988; 19: 340–4.PubMedGoogle Scholar
  11. 11.
    Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 1990; 10: 1035–41.PubMedGoogle Scholar
  12. 12.
    Kitagawa K, Matsumoto M, Oda T, et al. Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience 1990; 35: 551–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakano M, Sugioka K, Ushijima Y, Goto T. Chemiluminescence probe with cypridina luciferin analog, 2-methyl-6-phenyl-3, 7-dihydroimidazo [1,2-a] pyrazin-3-one, for estimating the ability of human granulocytes to generate O2 Anal Biochem 1986; 159: 363–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi N, Prado R, More J, Bunge B, Green BA. Regional changes of free radicals in photochemically induced ischemic injury in the central nervous system. Lasers in the Life Sciences 1991; 4: 153–9.Google Scholar
  15. 15.
    Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239: 57–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Pulsinelli WA, Brierly JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11: 491–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984; 43: 1369–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Simmon RP, Swan JH, Griffiths T, Meldrum BS. Blockade, of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984; 226: 850–2.CrossRefGoogle Scholar
  19. 19.
    Rothma SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 1986; 19: 105–11.CrossRefGoogle Scholar
  20. 20.
    Schanne FAX, Kane AB, Toung EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science 1979; 206: 700–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Rasmussen H, Waisman DM. Modulation of cell function in the calcium messenger system. Rev Physiol Biochem Pharmacol 1983; 95: 111–48.CrossRefGoogle Scholar
  22. 22.
    Sakamoto N, Kogure K, Kato H, Ohtomo H. Disturbed Ca2+ homeostasis in the gerbil hippocampus following brief transient ischemia. Brain Res 1986; 364: 372–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Martins E, Inamura K, Themner K, Malmqvist KG, Siesjo BK. Accumulation of calcium and loss of potassium in the hippocampus following transient cerebral ischemia: a proton microprobe study. J Cereb Blood Flow Metab 1988; 8: 531–8.PubMedGoogle Scholar
  24. 24.
    Deshpande JK, Siesjö BK, Wieloch T. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 1987; 7: 89–95.PubMedGoogle Scholar
  25. 25.
    Kiessling M, Dienel GA, Jacewicz M, Pulsinelli WA. Protein synthesis in postischemic rat brain: a two-dimensional electrophoretic analysis. J Cereb Blood Flow Metab 1986; 6: 642–9.PubMedGoogle Scholar
  26. 26.
    Thilmann R, Xie Y, Kleihues P, Kiessling M. Persistent inhibiton of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 1986; 71: 88–93.CrossRefGoogle Scholar
  27. 27.
    Imadhl A, Hossman KA. Morphometric evaluation of post-ischernic capillary perfusion in selectively vulnerable areas of gerbil brain. Acta Neuropathol (Berl) 1986; 69: 267–71.CrossRefGoogle Scholar
  28. 28.
    Ikeda Y, Hong DM. The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 1990; 27: 1–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Siesjö BK, Agardh C-D, Bengtsson F. Free radicals and brain damage. Cerebrovascular and Brain Metabolism Reviews 1989; 1: 165–211.PubMedGoogle Scholar
  30. 30.
    Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 1992; 77: 337–54.PubMedGoogle Scholar
  31. 31.
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Eng J Med 1990; 312: 159–63.Google Scholar
  32. 32.
    McCord JM, Roy RS. The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol 1982; 60: 1346–52.PubMedGoogle Scholar
  33. 33.
    Willmore LJ, Rubin JJ. Effects of antiperoxidants on FeCl2-induced lipid peroxidation and focal edema in rat brain. Exp Neurol 1984; 83: 62–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Kontos HA, Wei EP. Superoxide production in experimental brain injury. J Neurosurg 1986; 64: 803–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Abe K, Kogure K, Yamamoto H, Iamzawa M, Miyamoto K. Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J Neurochem 1987; 48: 503–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ando Y, Inoue M, Hirota M, Morino Y, Araki S. Effects of a Superoxide dismutase derivative on cold-induced brain edema. Brain Res 1989; 477: 286–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Itoh T, Kawakami M, Yamauchi Y, Shimizu S, Nakamura M. Effect of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stroke 1986; 17: 1284–7.PubMedGoogle Scholar
  38. 38.
    Shiga Y, Onodera H, Kogure K, et al. Neutrophil as a mediator of ischemia edema formation in the brain. Neurosci Lett 1991; 125: 110–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamada H, Hiramatsu M, Edamatsu R, Mori A. Free radical scavenging action of baicalein. Arch Biochem Biophys 1993; 306: 261–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Tagaya M, Matsumoto M, Kitagawa K, et al. Recombinant human Superoxide disumutase can attenuate ischemic neuronal damage in gerbils. Life Sci 1992; 51: 253–9.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1998

Authors and Affiliations

  • Shigeki Yamaguchi
    • 1
  • Hiromaru Ogata
    • 1
  • Shinsuke Hamaguchi
    • 1
  • Toshimitsu Kitajima
    • 1
  1. 1.Department of AnaesthesiologyDokkyo University, School of MedicineMibu TochigiJapan

Personalised recommendations