Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Response to surgical stress in elderly patients and Alzheimer’s disease

  • 250 Accesses

  • 11 Citations

Abstract

Purpose

To determine the effect of surgical stress on plasma epinephrine, norepinephrine, ACTH and cortisol concentrations in patients aged 80–99 yr and in patients complicated with Alzheimer’s disease.

Methods

A prospective controlled study was undertaken in 55 undergoing surgical reduction of femur neck fracture in Hirosaki University hospital and Hakodate Watanabe hospital; 18 patients in 80–99 yr (Group I) and 18 patients in 40–59 yr (Group 2) and 7 patients (Group A) with and 12 patients (Group B) without Alzheimer’s dementia (AD) aged 60–79 yr.

Results

The increase in plasma norepinephrine level (274%) of group I patients, 15 min after skin incision was higher than that in group 2 (191 %) (P < 0.01). Mean plasma cortisol levels (40.4 ± 4.7 and 44.1 ± 5.2 μg·dl−1) of group 1,15 min after skin incision and 60 min after the end of surgery were significantly higher than the 29.8 ±3.5 and 22.3 ± 3.0μg·dl−1 of group 2 (P < 0.05). Plasma norepinephrine (1092.9 ± 112.0 pg·ml−1) and cortisol concentrations (53.4 ± 5.8 μg·dl−1) in group A were higher than in group B (772.6 ± 82.4 pg·ml−1 and 41.7 ± 4.3 μg·dl−1) 15 min after skin incision (P< 0.05).

Conclusions

Plasma norepinephrine and cortisol responses to surgical stress are activated in elderly patients and in patients with Alzheimer’s disease.

Résumé

Objectif

Déterminer l’effet du stress chirurgical sur la concentration plasmatique d’épinéphrine, de norépinéphrine, d’ACTH et de cortisol chez des patients de 80–99 ans et chez des patients atteints de la maladie d’Alzheimer.

Méthode

On a entrepris l’étude prospective et contrôlée de 55 patients, devant subir une réduction de fracture du col du fémur aux hôpitaux Hirosaki University et Hakodate Watanabe, répartis comme suit: 18 dans le Groupe I (80-99 ans) et 18 dans le Groupe 2 (40-59 ans); 7 dans le Groupe A (démence d’Alzheimer DA) et 12 dans le Groupe B (sans DA) âgés de 60–79 ans.

Résultats

L’augmentation de la norépinéphrine plasmatique (274 %) était plus grande chez les patients du Groupe I que chez ceux du Groupe 2(191 %), 15 min après l’incision cutanée (P < 0,01). Les niveaux moyens de cortisol (40,4 ± 4,7 et 44,1 ± 5,2 μg·dl−1) du Groupe 1, 15 min après l’incision cutanée et 60 min après la fin de la chirurgie, ont été plus élevés que les niveaux enregistrés dans le Groupe 2 (29,8 ± 3,5 et 22,3 ±3,0 μg·dl−1) de façon significative (P < 0,05). Les concentrations plasmatiques de norépinéphrine (1092,9 ± 112,0 pg·ml−1) et de cortisol (53,4 ± 5,8 μg·dl−1) étaient plus élevées dans le Groupe A que dans le Groupe B (772,6 ± 82,4 pg·ml−1 et 41,7 ± 4,3 μg·dl−1) 15 min après l’incision cutanée (P < 0,05).

Conclusion

Les changements plasmatiques de norépinéphrine et de cortisol reliés au stress chirurgical sont plus marqués chez les patients âgés ou souffrant de la maladie d’Alzheimer.

References

  1. 1

    Hoeldlke RD, Cilmi KM. Effects of aging on catecholamine metabolism. J Clin Endcrinol Metab 1985; 60: 479–84.

  2. 2

    Lehmann M, Keul J. Age-associated changes of exercise-induced plasma catecholamine responses. Eur J Appl Physiol 1986; 55: 302–6.

  3. 3

    Esler MD, Thompson JM, Kaye DM, et al. Effects of aging on the responsiveness of the human cardiac sympathetic nerves to Stressors. Circulation 1995; 91: 351–8.

  4. 4

    Young JB, Rowe JW, Pallotta JA, Sparrow D, Landsberg L. Enhanced plasma norepinephrine response to upright posture and oral glucose administration in elderly human subjects. Metabolism 1980; 29: 532–9.

  5. 5

    Mettes J. Aging: hypothalamic catecholamines, neuroendocrine-immune interactions, and dietary restriction. Proc Soc Exp Biol Med 1990; 195: 304–11.

  6. 6

    Raskind MA, Peskind ER, Halter JB, Jimerson DC. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer disease. Arch Gen Psychiatry 1984; 41: 343–6.

  7. 7

    Issa AW, Rowe W, Gauthier S, Meaney MJ. Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. J Neurosa 1990; 10: 3247–54.

  8. 8

    Sonntag WE, Golieszek AG, Brodish A, Eldridge JC. Diminished diurnal secretion of adrenocorticotropin (ACTH), but not corticosterone, in old male rats: possible relation to increased sensitivity to ACTHin vivo. Endocrinology 1987; 120: 2308–15.

  9. 9

    Brett LP, Chong GS, Coyle S, Levine S. The pituitaryadrenal response to novel stimulation and ether stress in young adult and aged rats. Neurobiol Aging 1983; 4: 133–8.

  10. 10

    Davis KL, Davis BM, Greenwald BS, et al. Cortisol and Alzheimer’s disease, I: basal studies. Am J Psychiatry 1986; 143: 300–5.

  11. 11

    Greenwald BS, Mathé AA, Mohs RC, Levy MI, Johns CA, Davis KL. Cortisol and Alzheimer’s disease, II: dexamethasone suppression, dementia severity, and affective symptoms. Am J Psychiatry 1986; 143: 442–6.

  12. 12

    Sapolsky RM, Plotsky PM. Hypercortisolism and its possible neural bases. Biol Psychiatry 1990; 27: 937–52.

  13. 13

    Morrow LA, Linares OA, Hill TJ, et al. Age differences in the plasma clearance mechanisms for epinephrine and norepinephrine in humans. J Clin Endocrinol Metab 1987; 65: 508–11.

  14. 14

    Esler MD, Turner AG, Kaye DM, et al. Aging effects of aging on human sympathetic neuronal function. Am J Physiol 1995; 268: R278–85.

  15. 15

    Vitiello B, Veith RC, Molchan SE, et al. Autonomic dysfunction in patients with dementia of the Alzheimer’s type. Biol Psychiatry 1993; 34: 428–33.

  16. 16

    De Leon MJ, McRae T, Tsai JR, et al. Abnormal cortisol response in Alzheimer’s disease linked to hippocampal atrophy. Lancet 1988; 13: 391–2.

  17. 17

    De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol 1991; 12: 95–164.

  18. 18

    Ait Chaouri A, Rakotondrazafy J, Brudieux R. Agerelated changes in plasma corticosterone and aldosterone responses to endogenous ACTH in the rat. Horm Res 1995; 43: 181–7.

  19. 19

    Udelsman R, Holbrook NJ. Endocrine and molecular responses to surgical stress.In: Wells SA Jr (Ed.). Current Problems in Surgery 1994; 31: 655–720.

  20. 20

    Martigononi E, Petraglia F, Costa A, et al. Dementia of the Alzheimer type and hypothalamus-pituitaryadrenocortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol Scand 1990; 81: 452–6.

  21. 21

    Iida T, Tsubo T, Hirota K, Kudou M, Matsuki A, Oyama T. Effects of isoflurane anesthesia and surgery on endocrine function in man. (Japanese) Masui 1987; 36: 568–75.

  22. 22

    White PF, Dworsky WA, Horai T, Trevor AJ. Comparison of continuous infusion fentanyl or ketamine versus thiopental-determining the mean effective serum concentrations for outpatient surgery. Anesthesiology 1983; 59: 564–9.

  23. 23

    Esler M, Jennings G, Körner P, Blombery P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 1984; 247: E21–8.

Download references

Author information

Correspondence to Akira Kudoh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kudoh, A., Ishihara, H. & Matsuki, A. Response to surgical stress in elderly patients and Alzheimer’s disease. Can J Anesth 46, 247–252 (1999). https://doi.org/10.1007/BF03012604

Download citation

Keywords

  • Cortisol
  • Skin Incision
  • Plasma Cortisol
  • Femoral Neck Fracture
  • Cortisol Concentration