Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Augmented sensitivity to benzodiazepine in septic shock rats

  • 245 Accesses

  • 9 Citations


The purpose of this study was to assess the pharmacological characteristics of the benzodiazepine binding site in the brain of septic animals. We induced endotoxin shock in rats using a caecum ligation and puncture model. Following examination of the physiological state of the rats 24 hr after the caecum ligation and puncture, brain tissue samples were prepared for biochemical assay of amino acids and for the [3H]-diazepam radioligand binding assay. Amino acids assays indicated that the concentration of aromatic amino acids was higher in the CLP group (P < 0.05), the branched chain amino acid concentration was lower in the CLP group (P < 0.05) and the sulfur-containing amino acid concentration was elevated in the CLP group (P < 0.05) than in both the control and the shamoperated groups. [3H]-diazepam radioligand binding assays demonstrated that the number of receptors in the septic rats was increased in the forebrain (CLP rats; 2.37 ± 0.04 pmol · mg− 1 protein, control rats; 1.45 ± 0.02 pmol · mg− 1 protein, sham-operated rats; 1.49 ± 0.03 pmol · mg− 1 protein), cerebellum (CLP rats; 1.55 ± 0.05 pmol · mg− 1 protein, control rats; 1.05 ± 0.02 pmol · mg− 1 protein, sham-operated rats; 1.09 ± 0.02 pmol · mg− 1 protein) and brain stem (CLP rats; 1.21 ± 0.04 pmol · mg− 1 protein, control rats; 0.61 ± 0.02 pmol · mg− 1 protein, sham-operated rats; 0.63 ± 0.02 pmol · mg− 1 protein) compared with the control and shamoperated rats (P < 0.05). In conclusion, it was considered that the increased number of benzodiazepine receptors may be one cause of the neuronal alteration observed in septic shock animals.


L’objectif de cette étude était d’évaluer chez des animaux septiques les caractéristiques pharmacologiques des récepteurs cérébraux des benzodiazépines. Les auteurs ont provoqué un choc septique en conformité avec un modèle de ligature et de perforation du caecum chez le rat. Après l’examen de l’état physiologique des rats 24 heures après la ligature du caecum et sa perforation, des échantillons de tissus cérébral ont été préparés pour une analyse biochimique des acides aminés et l’épreuve de liaison au radioligant [3H]-diazepam. Les épreuves de mesure des acides aminés ont montré que la concentration des acides aminés aromatiques était plus élevée dans le groupe CLP (P < 0,05), que la concentration des acides aminés à chaîne ramifiée était plus basse dans le groupe CLP (P < 0,05) et que la concentration des acides aminés sulfurés était plus élevée dans le groupe CLP comparativement au groupe contrôle et au groupe interventions factices. Les épreuves de liaison au radioligand [3H]-diazépam ont montré que le nombre de récepteurs chez les rats septiques était augmenté dans le proencéphale (rats CLP; 2,37 ± 0,04 pmol · mg− 1 de protéines, rats contrôles; 1,45 ± 0,02 pmol · mg− 1 de protéine, les rats opérés de façon factice; 1,49 ± 0,03 pmol · mg− 1 de protéine) dans le cervelet (rats CLP; 1,55 ± 0,05 pmol · mg− 1 de protéine, rats contrôles; 1,05 ± 0,02 pmol · mg− 1 de protéine, les rats opérés de façon factice; 1,09 ± 0,02 pmol · mg− 1 de protéine) et dans le bulbe (rats CLP; 1,21 ± 0,04 pmol · mg− 1 de protéine, rats contrôles; 0,61 ± 0,02 pmol · mg− 1 de protéine; rats opérés de façon factice; 0,63 ± 0,02 pmol · mg− 1 de protéine) comparativement aux contrôles et aux rats opérés de façon factice (P < 0,05). Pour conclure, les auteurs considèrent que l’augmentation des récepteurs des benzodiazepines pourrait être une cause de l’altération neurale observées chez les animaux en choc septique.


  1. 1

    Rall TW. Hypnotics and sedatives; ethanol.In: Gilman AG, Rall TW, Nies AS, Taylor P (Eds.). The Pharmacological Basis of Therapeutics, 3rd ed. New York: Pergamon Press Inc., 1990; 345–82.

  2. 2

    Reves JG, Glass PSA, Lubarsky DA. Nonbarbiturate intravenous anesthetics.In: Miller RD (Ed.). Anesthesia, 4th ed. New York: Churchill Livingstone Inc., 1994; 247–89.

  3. 3

    Freund HR, Ryan JA Jr, Fischer JE. Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann Surg 1978; 188: 423–30.

  4. 4

    Freund HR, Atamian S, Holroyde J, Fischer JE. Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg 1979; 190: 571–6.

  5. 5

    Bowton DL. CNS effects of sepsis. Crit Care Clin 1989; 5: 785–92.

  6. 6

    Hasseigren P-O, Fischer JE. Septic encephalopathy. Etiology and management. Intensive Care Med 1986; 12: 13–6.

  7. 7

    Sprung CL, Cerra FB, Freund HR, et al. Amino acid alterations and encephalopathy in the sepsis syndrome. Crit Care Med 1991; 19: 753–7.

  8. 8

    Baraldi M, Zeneroli ML, Ventura E, et al. Supersensitivity of benzodiazepine receptors in hepatic encephalopathy due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin Sci 1984; 67: 167–75.

  9. 9

    Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock — a review of laboratory models and a proposal. J Surg Res 1980; 29: 189–201.

  10. 10

    Felice LJ, Felice JD, Kissinger PT. Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 1978; 31: 1461–5.

  11. 11

    Umegae Y, Nohta H, Lee M, Ohkura Y. 1,2-diarylethylenediamines as pre-column fluorescence derivatization reagents in high-performance liquid chromatographic determination of catecholamines in urine and plasma. Chem Pharm Bull 1990; 38: 2293–5.

  12. 12

    Fink PC, Lehr L, Urbaschek RM, Kozak J. Limulus amebocyte lysate test for endotoxemia: investigations with a femtogram sensitive spectrophotometric assay. Klinische Wochenschrift 1981; 59: 213–8.

  13. 13

    Ikeda T, Hirata K, Tabuchi K, Tamura H, Tanaka S. Quantitative measurement of endotoxin in canine plasma using the new endotoxin-specific chromogenic test. Circ Shock 1987; 23: 263–9.

  14. 14

    Mizock BA. Branched-chain amino acids in sepsis and hepatic failure. Arch Intern Med 1985; 145: 1284–8.

  15. 15

    Uhe AM, Collier GR, McLennan EA, Tucker DJ, O’Dea K. Quantitation of tryptophan and other plasmic amino acids by automated pre-column o-phthaldialdehide derivatization high-performance liquid chromatography: improved sample preparation. J Chromatogr 1991; 564: 81–91.

  16. 16

    Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain-1. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 1966; 13: 655–69.

  17. 17

    Möhler H, Okada T. Properties of3H-diazepam binding to benzodiazepine receptors in rat cerebral cortex. Life Sci 1977; 20: 2101–10.

  18. 18

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–54.

  19. 19

    Zeneroli ML, Baraldi M, Ventura E et al. Alterations of GABA-A and dopamine D-2 brain receptors in dogs with portal-systemic encephalopathy. Life Sci 1991; 48: 37–50.

  20. 20

    Bylund DB, Yamamura HI. Methods for receptor binding.In: Yamamura HI, Enna SJ, Kuhar MJ (Eds.). Methods in Neurotransmitter Receptor Analysis. New York: Raven Press, Ltd., 1990: 1–36.

  21. 21

    Kovarik MF, Jones SB, Romano FD. Plasma catecholamines following cecal ligation and puncture in the rat. Circ Shock 1987; 22: 281–90.

  22. 22

    Schlag G, Redl H. Pathophysiology of Shock, Sepsis, and Organ Failure. Berlin: Springer-Verlag, 1993.

  23. 23

    Parrilo JE, Parker MM, Natanson C, et al. Septic shock in humans. Advances in the understanding of pathogenesis, caniiovascular dysfunction, and therapy. Ann Intern Med 1990; 113: 227–42.

  24. 24

    Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993; 119: 771–8.

  25. 25

    Smith AR, Rossi-Fanelli F, Zipaco V, et al. Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. Ann Surg 1977; 187: 343–50.

  26. 26

    Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE. Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 1981; 141: 136–42.

  27. 27

    Vente JP, von Meyenfeldt MF, Van Eijk HMH, et al. Plasma-amino acid profiles in sepsis and stress. Ann Surg 1989; 209: 57–62.

  28. 28

    Takezawa J, Taenaka N, Nishijima MK, et al. Amino acids and thiobarbituric acid reactive substances in cerebrospinal fluid and plasma of patients with septic encephalopathy. Crit Care Med 1983; 11: 876–9.

  29. 29

    Motohashi N, Okamoto Y, Osada M, Yamawaki S. Acute swim stress increases benzodiazepine receptors, but not GABAA and GABAB receptors, in the rat cerebral cortex. Neurochem Int 1993; 23: 327–30.

  30. 30

    Havoundjian H, Paul SM, Skolnick P. Rapid, stressinduced modification of the benzodiazepine receptorcoupled chloride ionophore. Brain Res 1986; 375: 401–6.

  31. 31

    Lai H, Carino MA. Acute white noise exposure affects the concentration of benzodiazepine receptors in the brain of the rat. Pharmacol Biochem Behav 1990; 36: 985–7.

  32. 32

    Sibley DR, Lefkowitz RJ. Molecular mechanisms of receptor desensitization using the β-adrenergic receptorcoupled adenylate cyclase system as a model. Nature 1985; 317: 124–8.

  33. 33

    Wightman PD, Raetz CRH. The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J Biol Chem 1984; 259: 10048–52.

  34. 34

    Freund HR, Muggia-Sullam M, Peiser J, Melamed E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J Surg Res 1985; 38: 267–71.

  35. 35

    Dunn AJ. Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharm Exp Ther 1992; 261: 964–9.

  36. 36

    Kabiersch A, Rey AD, Honegger CG, Besedovsky HO. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav Immun 1988; 2: 267–74.

Download references

Author information

Correspondence to Shigeru Saito.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komatsubara, T., Kadoi, Y. & Saito, S. Augmented sensitivity to benzodiazepine in septic shock rats. Can J Anaesth 42, 937–943 (1995). https://doi.org/10.1007/BF03011043

Download citation

Key words

  • complications: shock
  • infection: septicaemia
  • hypnotics: benzodiazepine