Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Construction of an optical tweezer for nanometer scale rheology


The optical tweezer is a versatile set-up that can be employed in a wide variety of studies investigating the microscopic properties of materials. In particular, this set-up has in recent times been gainfully employed in probing rheological properties of materials that exhibit viscoelasticity. These measurements can provide data at the micro and nanometer scales, not normally accessible by rheometers that are used for measurements on bulk samples. In this work we describe a single laser beam optical tweezer set-up, which is built around an inverted open microscope. The trapped polystyrene particle bead’s deviation from the trap potential minimum is monitored by laser backscattering technique and the bead position measured by a quadrant photodiode detector. Additionally, a provision is made for video microscopic studies on dispersed beads using a CCD camera. A single particle microrheological experiment that can be performed using the set-up is described with relevant calculations.

This is a preview of subscription content, log in to check access.


  1. [1]

    D T Chen, E R Weeks, J C Crocker, M F Islam, R Verma, J Gruber, A J Levine, T C Lubensky and A G Yodh,Phys. Rev. Lett. 90, 108301–1 (2003)

  2. [2]

    T G Mason and D A Weitz,Phys. Rev. Lett. 74, 1250 (1995)

  3. [3]

    A Ashkin,Proc. Natl. Acad. Sci. 94, 4853 (1997)

  4. [4]

    T G Mason, K Ganesan, J H van Zanten, D Wirtz and S C Kuo,Phys. Rev. Lett. 79, 3282 (1997)

  5. [5]

    Ashis Mukhopadhyay and Steve Granick,Curr. Opin. Colloid Interface. Sci. 6, 423 (2001)

  6. [6]

    Stephen P Smith, Sameer R Bhalotra, Anne L Brody, Benjamin L Brown, Edward K Boyda and Mara Prentiss,Am. J. Phys. 67, 26 (1999)

  7. [7]

    John Bechhoefer and Scott Wilson,Am. J. Phys. 70, 393 (2002)

  8. [8]

    G V Soni, Feroz Meeran Hameed, T Roopa and G V Shivashankar,Curr. Sci. 83, 1464 (2002)

  9. [9]

    Koen Visscher, Steven P Gross and Steven M Block,IEEE J. Sel. Top. in Quantum Elect. 2, 1066 (1996)

  10. [10]

    L A Hough and H D Ou-Yang,J. Nanoparticle Res. 1, 495 (1999)

  11. [11]

    A Ashkin,Biophys. J. 61, 569 (1992)

  12. [12]

    Keir C Neuman and Steven M Block,Rev. Sci. Instrum. 75, 2787 (2004)

  13. [13]

    John C Crocker, M T Valentine, Eric R Weeks, T Gisler, P D Kaplan, A G Yodh and D A Weitz,Phys. Rev. Lett. 85, 888 (2000)

  14. [14]

    A J Levine and T C Lubensky,Phys. Rev. E65, 011501 (2001)

  15. [15]

    L Starrs and P Bartlett,Faraday Discuss. 123, 323 (2003)

  16. [16]

    B K Rafal Lugowski and Y Kawata,Opt. Commun. 202, 1 (2002)

  17. [17]

    Z Cheng and T G Mason,Phys. Rev. Lett. 90, 018304 (2003)

  18. [18]

    Alexis I Bishop, Timo A Nieminen, Norman R Heckenberg and H Rubinsztein-Dunlop,Phys. Rev. Lett. 92, 198104 (2004)

  19. [19]

    Frederick, Gittes and Christoph H Schmidt, inMethods in Cell Biology edited by Michael P Sheetz (Academic Press, California, USA) vol. 55, p. 138

  20. [20]

    John C Crocker and David G Grier,J. Colloid. Inter. Sci. 179, 298 (1996)

  21. [21]

    T Gisler and D A Weitz,Phys. Rev. Lett. 82, 1606 (1999)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raghu, A., Ananthamurthy, S. Construction of an optical tweezer for nanometer scale rheology. Pramana - J. Phys. 65, 699 (2005). https://doi.org/10.1007/BF03010457

Download citation


  • Micro and nanorheology
  • viscoelastic materials
  • soft matter
  • optical tweezer


  • 83.85.Ei
  • 47.80.+v
  • 83.60.Bc
  • 83.60.Df