Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Blood sugar, serum insulin and serum non-esterified fatty acid levels during thiopentone anaesthesia in dogs

  • 277 Accesses

  • 9 Citations

Abstract

The purpose of this study was to determine the effect of thiopentone anaesthesia on glucose metabolism. Blood sugar (BS), serum immunoreactive insulin (IRI) and serum non-esterified fatty acid (NEFA) concentrations were measured during the course of (1) an intravenous glucose tolerance test (IVGTT), and (2) an intravenous insulin test (ITT), in conscious and anaesthetized fasted dogs. The IVGTTs were repeated in dogs under alpha-or beta-adrenergic blockade, induced by phentolamine or propranolol. During the IVGTT, the anaesthetized dogs showed glucose intolerance (blood sugar levels were higher than in the control group) and little serum IRI response to hyperglycaemia was detected. An attenuated initial decrease and a slower rebound of NEFA concentration was observed in anaesthetized animals than in controls. Phentolamine administration (5 mg · kg−1 iv) partly restored the IRI response without affecting the BS levels; propanolol (1 mg · kg−1 iv) had no effect. Anaesthetized dogs showed a moderate resistance to insulin induced hypoglycaemic action and a lack of serum NEFA response during counter-regulation of hypoglycaemia, while in conscious controls an intense rebound was observed. Hyperinsulinaemia after iv insulin administration was longer in anaesthetized dogs than in controls. The insulin distribution space was 78% of body weight and insulin t1/2 in blood group compared with 54% and 16 min, in controls. We conclude that thiopentone provokes disturbances in glucose and serum NEFA metabolisms and abolishes the serum IRI response to hyperglycaemia. These effects are influenced by extrapancreatic factors regulating serum IRI levels and by an alpha-adrenergic mechanism, via the inhibition of insulin secretion.

Résumé

Cette étude porte sur les effets de l’anesthésie au thiopental sur la glycémie, l’insulinémie et la concentration des acides gras non-estérifiés (AGNE) sur des chiens en réponse à un test d’hyperglycémie provoquée et à une injection intraveineuse d’insuline. Le groupe contrôle se compose de chiens éveillés. Chez les chiens anesthésiés, on constate après le test d’hyperglycémie provoquée, une intolérance au glucose, une absence de réponse insulinique 5 min après l’injection du glucose (29 ± 15 μU · ml−1 comparativement à 85 ± 8 μU · ml−1 pour les contrôles) et une baisse moins importante des AGNE. Un bloc β- adrénergique au propanolol n’a pas modifié ces résultats. Cependant, l’administration de phentolamine (blocage α- adrénergique) rétablit partiellement la réponse insulinique sans modifier la glycémie. Chez le chien anesthesié, l’injection intraveineuse d’insuline entraîne une résistance aux actions hypoglycémiantes de l’insuline et lipolytique des hormones antiinsuliniques. L’insuline injectée lors du test d’hyperglycémie provoquée avait une demi-vie plus longue (27,5 min contre 16 min) et un volume de distribution plus grand (78% contre 54%) chez les chiens anesthésiés que chez les contrôles. On peut conclure que la réponse insulinique à l’hyperglycémie diminue chez les chiens anesthésiés au thiopental. En toute probabilité, on peut attribuer ces résultats à une association de facteurs extrapancréatiques auxquels s’ajoute un facteur α-adrénergique inhibitoire de la sécrétion insulinique.

References

  1. 1

    Dundee JW, Todd UM. Clinical significance of the effects of thiopentone and adjuvant drugs on blood sugar and glucose tolerance. BR J Anaesth 1958; 30: 77–82.

  2. 2

    Henneman DH, Bunker JP. Effects of general anesthesia on peripheral blood levels of carbohydrate and fat metabolites and serum inorganic phosphorus. J. Pharmacol Exp Ther 1961; 133: 253–61.

  3. 3

    Clarke RSJ. Clinical studies of induction agents. XXIV The influence of anaesthesia with thiopentone and propranidid on the blood sugar level. Br J Anaesth 1968; 40: 46–52.

  4. 4

    Clarke RSJ. The hyperglycaemic response to different types of surgery and anaesthesia. Br J Anaesth 1970; 42: 45–53.

  5. 5

    Johnston IDA. Endocrine aspects of the metabolic response to surgical operation. Ann R Coll Surg Engl 1964; 35: 270–7.

  6. 6

    Allison SP, Tomlin PJ, Chamberlain MJ. Some effects of anaesthesia and surgery on carbohydrate and fat metabolism. Br J Anaesth 1969; 41: 588–93.

  7. 7

    Kizer JS, Vargas-Cordon M, Brendel K, Bressler R. Thein vitro inhibition of insulin secretion by diphenilhydantoin. J Clin Invest 1970; 49: 1942–8.

  8. 8

    Panten U, Christians J, Kriegstein E, Poser W, Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perfused isolated pancreatic islets. Diabetologia 1973; 9: 477–82.

  9. 9

    Clarke RSJ. Anaesthesia and carbohydrate metabolism. Br J Anaesth 1973; 45: 237–43.

  10. 10

    Orsetti A, Basseres J, Macabies J. Variation de l’insulinosecrétion au cours de traitements par extraits thyröidiens chez le chien. J Physiol (Paris) 1967; 59: 276–86.

  11. 11

    Orsetti A, Basseres J, Macabies J. L’insulino sécrétion chez le chien en état de desequilibre thyroïdien. An Endocr 1970; 31: 15–8.

  12. 12

    Renauld A, Perez RL. Pancreas cytomorphometry and glycaemia, insulinaemia and serum free fatty acids in estrogen treated male dogs. Com Biol (Buenos Aires) 1989; 7: 365–84.

  13. 13

    Gerich JE, Charles MA, Grodsky GM. Regulation of pancreatic insulin and glucagon secretion. Ann Rev Physiol 1976; 38: 353–88.

  14. 14

    Unger RH, Orci L. Glucagon and the A-cell: physiology and pathophysiology. N Engl J Med 1981; 304: 1518–24.

  15. 15

    Felig P, Wahren J, Sherwin R, Hendler R. Insulin, glucagon, and somatostatin in normal physiology and diabetes mellitus. Diabetes 1976; 25: 1091–9.

  16. 16

    Press M. Growth hormone and metabolism. Diabetes Metab Rev 1988; 4: 391–414.

  17. 17

    Rico AG, Braun JP, Bonard P. Biochimie des substrats énergétiques au cours du diabètes pancréatique. Practique Médicale et Chirurgicale de l’animal de Compagnie 1985; 20 (Supp. 4): 353–6.

  18. 18

    Clutter WE, Rizza RA, Gerich J, Cryer PE. Regulation of glucose metabolism by sympathochromaffin catecholamines. Diabetes Metabol Rev 1988; 4: 1–15.

  19. 19

    Smith U, Lager I. Insulin-antagonistic effects of counterregulatory hormones: clinical and mechanistic aspects. Diabetes Metabol Rev 1989; 5: 511–25.

  20. 20

    Gannong WF. Review of Medical Physiology. Los Altos, California. Lange Medical Publications. 9th Ed. 1979; 231–8.

  21. 21

    Astrup P, Jorgensen K, Andersen OS, Engel K. The acidbase metabolism. Lancet 1960; 1: 1035–40.

  22. 22

    Siggard Andersen O, Engel K. A new acid-base nomogram. An improved method for the calculation of the relevant blood acid base data. Scand J Clin Lab Invest 1960; 12: 177–86.

  23. 23

    Goldbaum LR. An ultraviolet spectrophotometric procedure for the determination of barbiturates. J Pharmacol Exp Therap 1948; 94: 68–75.

  24. 24

    Goldbaum LR. An improved ultraviolet spectrophoto metric procedure for the determination of differentiation of barbiturates. Fed Proc 1951; 10: 299.

  25. 25

    Renauld A, Andrade LL, Lindental MS, Garcia B. Micrométodo automatizado para la medición de la glucemia. Estudio comparativo de conservadores. Revista Asociación Bioquímica Argentina 1975; 40: 171–4.

  26. 26

    Itaya K, Ui M. Colorimetric determination of free fatty acids in biological fluids. J Lipid Res 1965; 6: 16–8.

  27. 27

    Lison L. Statistique appliqués a la biologie expérimentale. Paris; Gauthier-Villars Ed. 1958: 85, 92.

  28. 28

    Dixon WJ, Massey FJ Jr. Introduction to the statistical analysis. New York, McGraw-Hill Book Co. 1957: 194.

  29. 29

    Newsome HH, Rose JC. The response of human adrenocorticotrophic hormone and growth hormone to surgical stress. J Clin Endocrinol Metab 1971; 33: 481–7.

  30. 30

    Makara GB. Mechanism by which stressful stimuli activate the pituitary-adrenal system. Fed Proc 1985; 44: 149–53.

  31. 31

    Adrogue HJ, Chap Z, Okuda Y, et al. Acidosis-induced glucose intolerance is not prevented by adrenergic blockade. Am J Physiol 1988; 255: E812–23.

  32. 32

    Campbell J, Rastogi KS. Growth hormone-induced diabetes and high levels of serum insulin in dogs. Diabetes 1966; 15: 30–43.

  33. 33

    Samols E, Weir GC. Adrenergic modulation of pancreatic α, β and δ cells, α-adrenergic suppression and β- adrenergic stimulation of somastostatin secretion, α- adrenergic stimulation of glucagon secretion in the perfused dog pancreas, J Clin Invest 1979; 63: 230–8.

  34. 34

    Schulman GI, Williams PE, Liljenquist JE, Lacy WW, Keller V, Cherrington D. Effect of hyperglycaemia independent of changes in insulin or glucagon on lipolysis in the conscious dog. Metabolism 1980; 29: 317–20.

  35. 35

    Conard V. Mesure de l’assimilation du glucose. Bases théoriques et applications cliniques. Acta Gastroenterol Belg; 1955; 18: 803–45.

  36. 36

    Gerich JE. Lilly lecture 1988. Glucose counterregulation and its impact on diabetes mellitus. Diabetes 1988; 37: 1608–17.

  37. 37

    Cryer PE, Gerich JE. Glucose counterregulation, hypoglycaemia, and intense insulin therapy in diabetes mellitus. N Engl J Med 1985; 313: 232–41.

  38. 38

    Reyes Toso CF, Rodriguez RR, Renauld A, Marquez AG, Sverdlik RC, Linares LM. Effect of beta-adrenergic propranolol blocking on hormonal mechanisms of glucose regulation in the dog. Medicina (Buenos Aires) 1991; 51: 26–32.

  39. 39

    Wolfe RR, Shaw JH. Effect of epinephrine infusion and adrenergic blockade on glucose oxidation in conscious dogs. Metabolism 1986; 35: 673–8.

  40. 40

    Eigler N, Sacca L, Sherwin RS. Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycaemia. J Clin Invest 1979; 63: 114–23.

  41. 41

    Gray DE, Lickley HLA, Vranic M. Physiologic effects of epinephrine on glucose turnover and plasma free fatty acid concentrations mediated independently of glucagon. Diabetes 1980; 29: 600–8.

  42. 42

    Holmes JC, Schneider FH. Pentobarbitone inhibition of catecholamine secretion. Br J Pharmacol 1973; 49: 205–13.

  43. 43

    McMahon M, Gerich J, Rizza J. Effect of glucocorticoids on carbohydrate metabolism. Diabetes Metab Rev 1988; 4: 17–30.

Download references

Author information

Correspondence to Carlos E Reyes Toso.

Additional information

This work was partly supported by the “National Board of Scientific and Technical Research” (CONICET), Res. Grant Nℴ PID E 949/86.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toso, C.E.R., Rodríguez, R.R., Renauld, A. et al. Blood sugar, serum insulin and serum non-esterified fatty acid levels during thiopentone anaesthesia in dogs. Can J Anaesth 40, 38–45 (1993). https://doi.org/10.1007/BF03009316

Download citation

Key Words

  • anaesthetics, intravenous: thiopentone
  • anaesthetic techniques: intravenous
  • hormones: insulin
  • metabolism: fatty acids, glucose
  • sympathetic nervous system: alpha-adrenergic antagonists, phentolamine, beta-adrenergic antagonists, propranolol