Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effets de l’halothane sur les gaz du sang et l’équilibre acido-basique artériels chez le rat intact et chez le rat chémodénervé

  • 202 Accesses

  • 8 Citations


L’halothane diminue la réponse ventilatoire à l’hypoxie et l’activité des chémorécepteurs artériels périphériques, réalisant une «chémodénervation chimique». Afin d’évaluer le rôle de cette «chémodénervation chimique» dans les modifications de l’équilibre acido-basique et des gaz du sang artériel provoquées par l’halothane, ces paramètres ont été mesurés chez des rats intacts éveillés, puis anesthésiés, et chez des rats chémodénervés, éveillés puis anesthésiés. Le niveau de l’anesthésie pouvant être modifié par la chémodénervation anatomique, l’ED50 inspirée d’halothane a été mesurée chez six rats avant et après chémodénervation anatomique. D’éventuelles modifications hémodynamiques dues à l’halothane et /ou à la chémodénervation anatomique pouvant interférer avec les résultats, la pression artérielle systémique et la fréquence cardiaque ont été mesurées chez six rats intacts éveillés, puis anesthésiés, et chez les six mêmes rats chémodénervés, éveillés puis anesthésiés. Chez neuf rats intacts et chez 19 rats chémodénervés, le pH artériel, la concentration artérielle de bicarbonates, et les gaz du sang artériel (PaO2 et PaCO2) ont été mesurés avant et après administration d’halothane. La chémodénervation anatomique ne modifia ni l’ED50 inspirée (1,1%), ni la pression artérielle moyenne et la fréquence cardiaque. Les effets hémodynamiques de l’halothane furent comparables chez les rats intacts et chez les rats chémodénervés. Les modifications des gaz du sang et de l’équilibre acido-basique provoquees par l’halothane chez les rats intacts, et par la chémodénervation anatomique chez les rats éveillés, ne furent pas significativement différentes: diminution significative de PaO2 et de pHa, augmentation significative de PaCO2 Chez les rats chémodénervés, l’halothane provoqua une diminution supplémental de PaO2 et une augmentation supplémentaire de PaCO2. Le fait que l’halothane et que la chémodénervation anatomique modifient de la même manière les gaz du sang et l’équilibre acido-basique est en faveur de l’action «chémodénervatrice chimique» de l’halothane. Mais les effets additionnels de l’halothane chez l’animal chémodénervé anatomiquement confirment que les effets de l’halothane sur les gaz du sang et l’équilibre acido-basique résultent de multiples points d’impact sur le système respiratoire.


Halothane decreases the ventilatory response to hypoxia and the activity of peripheral arterial chemoreceptors, resulting in “chemical chemodenervation.” In order to evaluate the role of this halothane-induced “chemical denervation” in acid-base and arterial blood gas changes, these values were measured in intact and chemodenervated rats, awake and under anaesthesia. Since the depth of anaesthesia could be modified by the anatomical chemodenervation, the ED50 of inspired halothane was determined in six rats before and after anatomical chemodenervation. To prevent haemodynamic changes due to halothane and/ or anatomical chemodenervation from interfering with the results, systemic arterial blood pressure and heart rate were measured in six intact rats, awake and then anaesthetized, and in the same rats after chemodenervation, awake and then anaesthetized. In nine intact rats and in 19 chemodenervated rats, arterial pH, arterial bicarbonate concentration, and arterial blood gases (PaO2 and PaCO2 were measured before and after administration of halothane. Anatomical chemodenervation modified neither the inspired ED50 (1.1%), nor the mean arterial blood pressure or heart rate. The haemodynamic effects of halothane were comparable in intact and in chemodenervated rats. Changes in arterial blood gases and acid-base balance due to halothane in intact rats and due to chemodenervation in awake rats were not different, but there was a decrease in PaO2 and pHa, and an increase in PaCO2. In chemodenervated rats, halothane caused a further decrease in PaO2 and a further increase in PaCO2. The fact that halothane and anatomical chemodenervation have similar effects on arterial blood gases and acid-base balance favours a “chemical chemodenervating” action of halothane. However, the additional effects of halothane in the anatomically chemodenervated animal show that the action of halothane on blood gases and acid-base balance is the result of multiple sites of impact on the respiratory system.


  1. 1

    Olson EB Jr, Dempsey JA. Rat as a model for human-like ventilatory adaptation to chronic hypoxia. J Appl Physiol 1978; 44: 763–9.

  2. 2

    Merkel G, Eger EI II. A comparative study of halothane and cyclopropane anesthesia. Including a method for equipotency. Anesthesiology 1963; 24: 346–57.

  3. 3

    Kaczmarczyk G, Reinhardt HW. Arterial blood gas tensions and acid-base status of Wistar rats during thiopentone and halothane anesthesia. Lab Anim Sci 1975; 25: 184–90.

  4. 4

    Heath DF, Rose JG. Body temperature control and arterial gases during halothane anaesthesia in the rat. J Pharm Pharmacol 1976; 28: 151–3.

  5. 5

    Rehder K. Anaesthesia and the respiratory system. Can Anaesth Soc J 1979; 26: 451–62.

  6. 6

    Severinghaus JW, Larson CP Jr. Respiration in anesthesia.In: Fenn O, Rahn H (Eds.). Handbook of Physiology. Vol 2: Respiration. Washington: American Physiological Society, 1965, 1219–1964.

  7. 7

    Weiskopf RB, Raymond LW, Severinghaus JW. Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia. Anesthesiology 1974; 41: 350–60.

  8. 8

    Knill RL, Gelb AW. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 1978; 49: 244–51.

  9. 9

    Popovic V, Popovic P. Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol 1960; 15: 727–8.

  10. 10

    Martin-Body RL, Robson GJ, Sinclair JD. Respiratory effects of sectioning the carotid sinus glossopharingeal and abdominal vagal nerves in the awake rat. J Physiol 1985; 361: 35–45.

  11. 11

    White PF, Johnston RR, Eger EI II. Determination of anesthetic requirement in rats. Anesthesiology 1974; 40: 52–7.

  12. 12

    Biscoe TJ, Millar RA. Effects of inhalation anaesthetics on carotid body chemoreceptor activity. Br J Anaesth 1968; 40: 2–12.

  13. 13

    Bouverot P, Collin R, Favier R, Flandrois R, Sebert P. Carotid chemoreceptor function in ventilatory and circulatory O2 convection of exercising dogs at low and high altitude. Resp Physiol 1981; 43: 147–67.

  14. 14

    Cowley AW Jr, Liard JF, Guyton AC. Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res 1973; 32: 564–76.

  15. 15

    Barker SJ, Easton JC, Howe A. Peripheral arterial chemoreceptors in the rat: paucity of thoracic glomus tissue. J Physiol 1980; 308: 62P.

  16. 16

    Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol 1977; 42: 344–8.

  17. 17

    Hollinshead WH. The function of the abdominal chemoreceptors of the rat and mouse. Am J Physiol 1946; 147: 654–60.

  18. 18

    Altland PD, Brubach HF, Parker MG, Highman B. Blood gases and acid-base values of unanesthetized rats exposed to hypoxia. Am J Physiol 1967; 212: 142–8.

  19. 19

    Burlington RF, Maher JT, Sidel CM. Effect of hypoxia on blood gases, acid-base balance and in vitro myocardial function in a hibernator and a nonhibernator. Federation Proceedings 1969; 28: 1042–6.

  20. 20

    Lewis LD, Ponten U, Siesjö BK. Arterial acid-base changes in unanaesthetized rats in acute hypoxia. Respir Physiol 1973; 19: 312–21.

  21. 21

    Liberman IM, Capano A, Gonzalez F, Brazzuna H, Garcia H, De Gelabert AG. Blood acid-base status in normal albino rats. Lab Anim Sci 1973; 23: 862–5.

  22. 22

    Mani K, Weinstein SA. Effect of carbonic anhydrase inhibition on blood gas and acid-base balance during hypoxia. Bulletin Johns Hopkins Hospital 1966; 119: 331–42.

  23. 23

    Marder J, Bar-Ilan A. Acid-base metabolism in the albino rat during hypercapnia. Physiology Zoology 1975; 48: 282–9.

  24. 24

    Pepelko WE, Dixon GA. Arterial blood gases in conscious rats exposed to hypoxia, hypercapnia, or both. J Appl Physiol 1975; 38: 581–7.

  25. 25

    Simmons DH, Kahn FH, Goze LB. Blood gases of rats at altitude and sea level. Federation Proceedings 1966; 25: 1274–82.

  26. 26

    Brun-Pascaud M, Gaudebout C, Blayo MC, Pocidalo JJ. Arterial blood gases and acid-base status in awake rats. Respir Physiol 1982; 48: 45–57.

  27. 27

    Dahlgren N. Local cerebral blood flow in spontaneously breathing rats subjected to graded isobaric hypoxia. Acta Anaesthesiol Scand 1990; 34: 463–7.

  28. 28

    Folle LE, Levesque RI. Circulatory, respiratory and acid-base changes produced by anesthetics in the rat.Acta Biologica et Medica Germanica (Berlin) 1976; 35: 605–12.

  29. 29

    Olson EB Jr.Vidruk EH, Dempsey JA. Carotid body excision significantly changes ventilatory control in awake rats. J Appl Physiol 1988; 64: 666–71.

  30. 30

    Cragg PA, Drysdale DB. Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anaesthetized rat. J Physiol 1983; 341: 477–93.

  31. 31

    Dejours P, Girard F, Labrousse Y, Teillac A. Etude de la régulation de la ventilation de repos chez l’iomme en haute altitude. Revue Francaise d’Etudes Cliniques et Biologiques 1959; 4: 115–27.

  32. 32

    Hornbein TF, Roos A, Griffo ZJ. Transient effect of sudden mild hypoxia on respiration. J Appl Physiol 1961; 16: 11–4.

  33. 33

    Davies RO, Edwards MW Jr, Lahiri S. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Anesthesiology 1982; 57: 153–9.

Download references

Author information

Correspondence to Jean-Henri Gaudy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaudy, J., Sicard, J., Maneglia, R. et al. Effets de l’halothane sur les gaz du sang et l’équilibre acido-basique artériels chez le rat intact et chez le rat chémodénervé. Can J Anaesth 40, 883 (1993). https://doi.org/10.1007/BF03009263

Download citation

Key words

  • receptors: chemoreceptors, carotid sinus
  • anaesthetics, volatile: halothane