Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Zero sets and random zero sets in certain function spaces

  • 41 Accesses

  • 6 Citations

This is a preview of subscription content, log in to check access.


  1. [1]

    E. Beller,Zeros of A P functions and related classes of analytic functions, Israel J. Math.22 (1975), 68–80.

  2. [2]

    G. Bomash,A Blaschke-type product and random zero sets for Bergman spaces, Arkiv für Math.30 (1992), 45–60.

  3. [3]

    W. K. Hayman and B. Korenblum,An extension of the Riesz-Herglotz formula, Ann. Acad. Sci. Fenn. A.I. Math.2 (1976), 175–201.

  4. [4]

    W. K. Hayman and B. Korenblum,A critical growth rate of functions regular in a disk, Mich. Math. J.27 (1980), 21–30.

  5. [5]

    A. Heilper,The zeros of functions in Nevanlinna’s area class, Israel J. Math.34 (1979), 1–11.

  6. [6]

    C. Horowitz,Zeros of Functions in the Bergman Spaces, Ph.D. Thesis, Univ. of Michigan, 1974.

  7. [7]

    C. Horowitz,Zeros of functions in the Bergman spaces, Duke Math. J.41 (1974), 693–710.

  8. [8]

    C. Horowitz,Some conditions on Bergman space zero sets, J. Analyse Math.62 (1994), 323–348.

  9. [9]

    E. LeBlanc,A probabilistic zero set condition for the Bergman space, Mich. Math. J.37 (1990), 427–438.

  10. [10]

    K. Seip,Beurling type density theorems in the unit disk, Inventiones Math. (to appear).

  11. [11]

    H. S. Shapiro and A. L. Shields,On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z.80 (1962), 217–229.

Download references

Author information

Correspondence to E. Beller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beller, E., Horowitz, C. Zero sets and random zero sets in certain function spaces. J. Anal. Math. 64, 203 (1994). https://doi.org/10.1007/BF03008409

Download citation


  • Function Space
  • Bergman Space
  • Independent Choice
  • Random Zero
  • Single Radius