Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trimethaphan-induced hypotension: effect on renal function

  • 174 Accesses

  • 6 Citations

Abstract

This study was designed to evaluate the effects of trimethaphan-induced hypotension on renal function in healthy young patients undergoing maxillofacial surgery. Anaesthesia was induced with thiopentone and was maintained with halothane 1.5-2.0 per cent in oxygen. Each patient served as his own control, and data were analyzed using the paired t-test. Trimethaphan was infused at a rate of 45-52 [xg-kg-lmin-1 for an average hypotensive period of 53 ± 4 (mean ± SEM) minutes to reduce the mean arterial pressure (MAP) to 49 ± 2 torr. Endogenous creatinine clearance, urinary Po2, sodium reabsorption rate (TNa), and serum and urine osmolalities were determined before, during and after arterial hypotension with trimethaphan. Urine flow averaged 2.9 ± 1 ml/min during the period of hypotension. Endogenous creatinine clearance and TNa were significantly decreased (p < 0.05) in the hypotensive period. These values returned to normal levels within one hour upon discontinuation of trimethaphan and restoration of blood pressure. We found no statistical difference in urine Po2, and serum and urine osmolalities during control, hypotensive and recovery periods. These results suggest that medullary renal tissue oxygenation, an index of tissue viability, may have remained adequate despite a significant reduction in endogenous creatinine clearance during the hypotensive period. Furthermore, it appears that the effect of trimethaphan-induced hypotension on renal function is similar to the sodium nitro-prusside-induced hypotension in man which we have reported previously.

Résumé

Cette étude aé6lé entreprise dans le but d’évaluer le retentissement de l’hypotension produite par le trimetaphan (TMP) sur la fonction résale de jeunes adultes en bon état subissant une intervention maxillo-faciale. L’anesthésie a été induite au thiopentone et maintenue à l’halothane 1.5-2.0 pour cent dans l’oxygène. Chaque patient était son propre contrôle et les données ont été analysées avec le test de Student. Le TMP a été perfusé#x00E9; à la vitesse de 45-52ing-kg--min-1 pour une durée moyenne d’hypotension de 53 ± 4 (moyenne ± SEM) minutes de façbaisser la pression artérielle moyenne à 49 ± 2 torr. La clairance de Iacréatinine endogène, la Po2 urinaire, la vitesse de réabsorbtion au sodium (TNa) et l’osmolalité urinaire et sérique ont été déterminées avant, pendant et après l’hypotension au TMP. Le débit urinaire était en moyenne de 2.9 ± 1 ml/min pendant la période d’hypotension. La clairance de la créatinine endogène et laT Na se sont abaissées de facçon significative (P < 0.05) pendant la péiiode hypotensive. II n’y a eu de différence significative dans la P02 urinaire et les osmolalités sérique et urinaire pendant la période de contrôle, d’hypotension et de recouvrement. Ces résultats suggèrent que l’index de viabilité du tissus rénal qu’est I’oxygénation médullaire pourrait être adéquat malgré une baisse significative de la clairance de la créatinine endogène pendant la période hypotensive. De plus, il semble que le retentissement de l’hypotension produite par le TMP sur la fonction résale est identique à celle produite chez 1’homme par le nitroprussiate de soude.

References

  1. 1.

    Eckenhoff, J.E. Deliberate hypotension. Anes-thesiology48: 87–88 (1978).

  2. 2.

    Lindop, M.J. Complications and morbidity of controlled hypotension. Br. J. Anaesth.47: 799–803 (1975).

  3. 3.

    Larson, A.G. Deliberate hypotension. Anesthe-siology25: 682–706 (1964).

  4. 4.

    Behnia, R., Siqueira, E.G. &Brunner. E.A. Sodium nitroprusside-induced hypotension: Effect on renal function. Anesth. Analg.57: 521–526 (1978).

  5. 5.

    Chasson, A.I., Grady, H.T. &Stanley, M.T. Determination of creatinine by means of automatic chemical analysis. Am. J. Clin. Pathol.35: 83–88 (1961).

  6. 6.

    Snedecor, G.W. Statistical Methods. Ames: Iowa State University Press (1962).

  7. 7.

    Tietz, N. Fundamentals of Clinical Chemistry. Philadelphia: W.B. Saunders (1976).

  8. 8.

    Levinsky, N. &Levy, M. Handbook of Physiology: Renal Physiology. Washington, D.C.: American Physiological Society (1973).

  9. 9.

    Koushanpour, E. Renal Physiology: Principles and Functions. Philadelphia: W.B. Saunders (1976).

  10. 10.

    Moyer, J.H., McConn, R. &Morris, G.G. Effect of controlled hypotension with pendionide (as used in surgery) on renal hemodynamics and water and electrolyte excretion - A comparison with hexamethonium and arfonad and the effect of norepinephrine on these responses. Anesthesi-ology16: 355–364 (1955).

  11. 11.

    Thompson, G.E., Miller, R.D., Wendell, S.C. &Murray, W.R. Hypotensive anesthesia for total hip arthroplasty. A study of blood loss and organ (brain, heart, liver and kidney). Anes-thesiology48: 91–96 (1978).

  12. 12.

    Hugosson, R. &Hogstrom, S. Factors disposing to morbidity in surgery of intracranial aneurysms with special regard to deep controlled hypotension. J. Neurosurg.38: 561–567 (1973).

  13. 13.

    Wang, H.D., Liu, L.M.P. &Katz, R.L. A comparison of the cardiovascular effects of sodium nitroprusside and trimethaphan. Anesthesi-ology46: 40–48 (1977).

  14. 14.

    Strauss, J., Beran, A.V., Brown, C.T. &Katurich, K. Renal oxygenation under “normal” conditions. Am. J. Physiol.215: 1482–1487 (1968).

  15. 15.

    Leonhardt, K.O. &Landes, R.R. Oxygen tension of the urine and renal structures. N. Engl. J. Med.269: 1115–1121 (1963).

  16. 16.

    Leonhardt, K.O. &Landes, R.R. Urinary oxygen pressure in renal parenchymal and vascular disease. JAMA194: 345–350 (1965).

  17. 17.

    Leonhardt, K.O., Landes, R.R. &Mc-Cauley, R.T. Anatomy and physiology of intrarenal oxygen tension: Preliminary study of effects of anesthetics. Anesthesiology26: 648–658 (1965).

  18. 18.

    Thaysen, J.H., Lassen, N.A. &Munck, Sodium transport and oxygen consumption in the mammalian kidney. Nature790: 919–921 (1961).

  19. 19.

    Thurau, K. Renal hemodynamics. Am. J. Med.36: 698–719 (1964).

Download references

Author information

Correspondence to Rahim Behnia or Adrian Martin or Esmail Koushanpour or Edward A. Brunner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behnia, R., Martin, A., Koushanpour, E. et al. Trimethaphan-induced hypotension: effect on renal function. Canad. Anaesth. Soc. J. 29, 581–586 (1982). https://doi.org/10.1007/BF03007745

Download citation

Key Words

  • Kidney
  • function
  • induced hypotension
  • Hypotension
  • induced
  • trimethaphan
  • sodium nitroprusside
  • Anaesthetics
  • volatile
  • halothane