Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Regard critique sur les modèles animaux de douleur aiguë

  • 31 Accesses


Les modèles de douleur aiguë utilisés chez l’animal d’expérience au cours des études précliniques et dans la recherche «fondamentale» sont analysés de façon critique. Les rapports entre tests de douleur aiguë et motricité sont abordés sous différents angles, notamment l’influence que les ajustements posturaux de l’animal exercent sur une réponse motrice des membres et la signification des réflexes de flexion et d’extension. Il est souligné que les réflexes de flexion ne sont pas tous nociceptifs. Comme la plupart des tests ne permettent qu’une mesure de seuil alors que la douleur clinique en est toujours éloignée lorsque le médecin doit la prendre en charge, le problème de leur sensibilité se trouve posé. Certaines questions sont plus particulièrement développées, notamment (1) la signification des mesures de «latence» lorsque le stimulus est croissant et (2) la nature des fibres à l’origine de la réaction observée qui pourrait être différente selon que l’on stimule un territoire sain ou enflammé. La prédictivité de ces tests sur le plan clinique est passée en revue avec quelques exemples. Puis les facteurs pouvant perturber la mesure des réponses comportementales de l’animal sont analysés, notamment les interactions entre stimulus hétérotopiques, les facteurs environnementaux et les fonctions psychophysiologiques et psychologiques intercurrentes (phénomènes subjectifs «indésirables», phénomènes d’apprentissage). Les fonctions physiologiques intercurrentes (thermorégulation, vasomotricité, pression artérielle) sont plus particulièrement commentées. Ces dernières considérations invitent à replacer la nociception dans un cadre homéostatique plus vaste qui, outre la douleur, inclue d’autres fonctions comme l’anxiété et les fonctions végétatives. Enfin, la validité de certaines méthodes d’analyse des résultats est analysée.


The animal models of acute pain used in preclinical studies and «fundamental» research are analysed critically. We review the relationship between tests of acute pain and motor activity from a number of viewpoints; in particular we consider the influence which postural adjustments of the animal may exert on motor responses in the limbs and the significance of the flexor and extensor reflexes. It is emphasised that not all flexion reflexes are nociceptive. Since the majority of tests permit only a measurement of threshold, whereas clinical pain almost always lasts until the doctor deals with it, the problem of their sensitivity is put forward. Several questions are more particularly developed, namely (1) what significance do measurements of «latency» have when a stimulus is increasing; (2) what type(s) of fibres underlie the observed responses and might these be different depending on whether one is stimulating a healthy or an inflamed tissue. The predictivity of tests is illustrated with examples. Then, we review those factors which may distort behavioural measurements in animals, notably—interactions between heterotopics stimuli, environmental factors and related psychophysiological/psychological considerations (subjectively «undesirable» phenomena, learning phenomena). We pay particular attention to related physiological functions (thermoregulation, vasomotricity and blood pressure). These considerations lead us to re-position nociception within a much larger homeostatic framework which in addition to pain, includes phenomena such as anxiety and vegetative functions. Finally, we questioned the validity are some methods of analysing the results.

This is a preview of subscription content, log in to check access.


  1. 1.

    Adler M.W., Geller E.B., Rosow C.E. andCochin J.: The opioid system and temperature regulation.Ann. Rev. Pharmacol. Toxicol. 28, 429–449, 1988.

  2. 2.

    Andrell O.: Cutaneous pain elicited in man by thermal radiation, dependence of the threshold intensity on stimulation time, skin temperature and analgesics.Acta. Pharmacol. Toxicol. 10, 30–37, 1954.

  3. 3.

    Ankier S.I.: New hot plate tests to quantify antinociceptive and narcotic antagonist activities.Eur. J. Pharmacol. 27, 1–4, 1974.

  4. 4.

    Applebaum B.D. andHolzman S.G.: Stress-induced changes in the analgesic and thermic effects of opioid peptides in the rat.Brain Res. 358, 303–308, 1986.

  5. 5.

    Auckland K. andWiig H.: Hemodynamics and interstitial fluid pressure in the rat tail.Amer. J. Physiol. Heart. Circ. Physiol. 247, H80-H87, 1984.

  6. 6.

    Baldwin A.E. andCannon J.T.: Sensitization of the tail-flick reflex following exposure to either a single prolonged test or behavioral testing under the analgesic influence of morphine.Pain 67, 163–172, 1996.

  7. 7.

    Bandler R. andDepaulis A.:Midbrain periaqueductal gray control of defensive behavior in the cat and the rat. In: A. Depaulis and R. Bandler (eds): “The midbrain periasqueductal grey matter, functional, anatomical and neurochemical organization». NATO ASI series, vol. 213, 175–198, 1991.

  8. 8.

    Beecher H.K.: Limiting factors in experimental pain.J. Chron. Dis. 4, 11–21, 1956.

  9. 9.

    Beecher H.K.: The measurement of pain.Pharmacol. Rev. 9, 59–209, 1957.

  10. 10.

    Behbehani M.M.: Functional characteristics of the midbrain periaqueductal gray.Progress in Neurobiology 46, 575–605, 1995.

  11. 11.

    Behrends T., Schomburg E.D. andSteffens H.: Facilitatory interaction between cutaneous afferents from low threshold mechanoreceptors and nociceptors in segmental reflex pathways to alpha motoneurones.Brain Res. 260, 131–134, 1983.

  12. 12.

    Benedetti C., Bonica J.J. andBelluci G.:Pathophysiology and therapy of postoperative pain, a review.In: «Advances in pain research and therapy» vol. 7, Benedetti C., Chapman C.R., Morrica G. (eds): New York, Raven Press, 373–407, 1984.

  13. 13.

    Berge O.G., Garcia-Cabrera I. andHole K.: Response latencies in the tail-flick test depend on tail skin temperature.Neurosc. Lett. 86, 284–288, 1988.

  14. 14.

    Berry J.J., Montgomery L.D. andWilliams B.A.: Thermoregulatory responses of rats to varying environemental temperatures.Aviat. Space Environ Med. 55, 546–549, 1984.

  15. 15.

    Blessing WW: The lower brainstem and bodily homeostasis. Oxford University Press, 575 pp., 1997.

  16. 16.

    Bonnycastle D.D.:The use of animals in the study of analgetic drugs.In: «The assessment of pain in man and animal». Keele C.A. and Smith R. (eds), Livingston, Edimburgh, 231–243, 1962.

  17. 17.

    Brown A.C., Beeler W., Kloka A. andFields R.: Spatial summation of pre-pain and pain in human teeth.Pain 21, 1–16, 1985.

  18. 18.

    Brunaud M.: Effets Pharmacologiques de la morphine et des morphiniques chez les animaux domestiques.Rec. Med. Vet. 162, 1421–1428, 1986.

  19. 19.

    Buettner K.: Effects of extreme heat and cold on human skin. II. Surface temperature, pain and heat conductivity in experiments with radiante heat.J. Applied. Physiol. 3, 703–713, 1951.

  20. 20.

    Bustamante D., Paeile C., Willer J.C. andLe Bars D.: Effects of intravenous non-steroidal anti-inflammatory drugs on a C-fibre reflex elicited by a wide range of stimulus intensities in the rat.J. Pharmacol. Exper. Ther. 276, 1232–1243, 1996.

  21. 21.

    Calcagnetti D.J. andHoltzman S.G.: Potentiation of morphine analgesia in rats given a single exposure to restraint stress immobilization.Pharmacol. Biochem. Behav. 41, 449–453, 1992.

  22. 22.

    Calvino B.: Differential effect of a chemical algogen on two nociceptive thresholds.Physiology and Behavior 47, 907–910, 1990.

  23. 23.

    Calvino B., Villanueva L. andLe Bars D.: The heterotopic effects of visceral pain, behavioural and electrophysiological approaches in the rat.Pain 20, 261–271, 1984.

  24. 24.

    Campbell I.G., Carsten E. andWatkins L.R.: Comparison of human pain sensation and flexion withdrawal evoked by noxious radiant heat.Pain 45, 259–268, 1991.

  25. 25.

    Campbell E., Bevan S. andDray A.:Clinical applications of capsaicin and its analogues.In: Wood J. (Ed), Capsaicin in the study of pain, Academic Press Limited, London, 255–272, 1993.

  26. 26.

    Carmody J.: Avoiding fallacies in nociceptive measurements.Pain 63, 136, 1995.

  27. 27.

    Carrive P.:Functional organization of PAG neurons controlling regional vascular beds. In: A. Depaulis and R. Bandler (eds) «The midbrain periaqueductal grey matter, functional, anatomical and neurochemical organization». NATO ASI series,213, 67–100, 1991.

  28. 28.

    Carroll M.N.: The effect of injury in nociceptive tests employed in analgetic assays.Arch. Int. Pharmacodyn. Ther. 123, 48–57, 1959.

  29. 29.

    Carstens E. andAnsley D.: Hindlimb Flexion Withdrawal Evoked by Noxious Heat in Conscious Rats—Magnitude Measurement of Stimulus—Response Function, Suppression by Morphine and Habituation.J. Neurophysiol. 70, 621–629, 1993.

  30. 30.

    Carstens E. andCampbell I.G.: Parametric and Pharmacological studies of midbrain suppression of the hind limb flexion withdrawal reflex in the rat.Pain 33, 201–213, 1988.

  31. 31.

    Carstens E. andWilson C.: Rat tail flick reflex, magnitude measurement of stimulus-response function, suppression by morphine and habituation.J. Neurophysiol. 70, 630–639, 1993.

  32. 32.

    Chapman C.R., Casey K.L., Dubner R., Foley K.M., Gracely R.H. andReading A.E.: Pain measurement, An overview.Pain 22, 1–31, 1985.

  33. 33.

    Chapman D.N. andWay E.L.: Modification of endorphine/enkephalin analgesia and stress-induced analgesia by divalent cations, a cation chelator and an ionophore.Brit. J. Pharmacol. 75, 389–396, 1982.

  34. 34.

    Chau:Analgesic testing in animal models.In: “Pharmacological methods in the control of inflammation».In: Chang J.Y. and Lewis A.J. (eds), Alan Liss, New York, 195–212, 1989.

  35. 35.

    Chen X.H., Geller E.B., de Riel J.K., Liu-Chen L.Y. andAdler M.W.: Antisense oligodeoxynucleotides against mu- or kappa-opioid receptors block agonist-induced body temperature changes in rats.Brain Res. 688, 237–241, 1995.

  36. 36.

    Conway E.L., Brown M.J. andDollery C.T.: Plasma catecholamine and cardiovascular responses to morphine and d-ala-d-leu-enkephelin in conscious rats.Arch. Int. Pharmacodyn. Ther. 265, 244–258, 1983.

  37. 37.

    Cook L. andWeidley E.: Behavioral effects of some psychopharmacological agents.Annals N.Y. Acad. Sci. 66, 740–752, 1957.

  38. 38.

    Cooper B.Y. andVierck C.J.: Measurement of pain and morphine hyperalgesia in monkeys.Pain 26, 361–392, 1986.

  39. 39.

    Cooper B.Y., Vierck C.J. Jr andYeomans D.C.: Selective reduction of second pain sensations by systemic morphine in humans.Pain 24, 93–116, 1986.

  40. 40.

    D'Amore A., Chiarotti F. andRenzi P.: High intensity nociceptive stimuli minimize behavioral effects induced by restraining stress during the tail-flick test.J. Pharmacol. Toxicol. Methods 27, 197–201, 1992.

  41. 41.

    Dalens B.: La douleur aiguë de l’enfant et son traitement.Ann. Fr. Anesth. Réanims. 10, 36–61, 1991.

  42. 42.

    Dewey W.L.:Narcotic-antagonist assay procedures in dogs.In: «Narcotic antagonists. Advances in Biochemical PsychoPharmacology», vol. 8, Braude M.C., Harris L.S., May E.L., Smith J.P. and Villareal J.E. (eds),Raven Press, New York, 263–272, 1974.

  43. 43.

    Dirig D.M. andYaksh T.L.: Differential right shifts in the dose-response curve for intratrathecal morphine and sufentanil as a function of stimulus intensity.Pain 62, 321–328, 1995.

  44. 44.

    Dubinsky B., Gebre-Mariam S., Capetola R.J. andRosenthale M.E.: The antialgesic drugs, human therapeutic correlates of their potency in laboratory animal models of hyperalgesia.Agents and Actions 20, 50–60, 1987.

  45. 45.

    Dubner R., Price D.D., Beitel R.E. andHu J.W.:Peripheral correlates of behavior in monkey and human related to sensory discriminative aspects of pain.In: D.J. Anderson and B. Matthews (eds), «Pain in the trigeminal region»,Elsevier, New York, 57–66, 1977.

  46. 46.

    Dubuisson D. andDennis S.G.: The formalin test, a quantitative study of the analgesic effects of morphine, meperidine and brain stem stimulation in rats and cats.Pain 4, 161–174, 1977.

  47. 47.

    Duggan A.W., Griersmith B.T., Headley P.M. andMaher J.B.: The need to control skin temperature when using radiant heat in test of analgesia.Exper. Neurol. 61, 471–478, 1978.

  48. 48.

    Eide P.K. andTjolsen A.: Effects of serotonin receptor antagonists and agonists on the tail-flick response in mice involve altered tailskin temperature.Neuropharmacology 27, 889–893, 1988.

  49. 49.

    Evans A.G.J., Nasmyth P.A. andStewart H.C.: The fall of blood pressure caused by intravenous morphine in the rat and the cat.Brit. J. Pharmacol. 7, 542–552, 1952.

  50. 50.

    Falcon F., Guendellman D., Stolberg A., Frenk H. andUrca G.: Development of thermals nociception in rats.Pain 67, 203–208, 1996.

  51. 51.

    Fennessy M.R. andRattray J.F.: Cardiovascular effects of intravenous morphine in the anaesthetized rat.Eur. J. Pharmacol. 14, 1–8, 1971.

  52. 52.

    Fields H., Bry J., Hentall I. andZorman G.: The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat.J. Neurosci. 3, 2545–2552, 1983.

  53. 53.

    Fitzgerald M.:Neurobiology of fetal and neonatal pain.In: «Textbook of Pain» P.D. Wall and R. Melzack (eds), Churchill Livingstone, Edinburgh, 153–163, 1994.

  54. 54.

    Fleischer E., Handwerker H.O. andJounkhadar S.: Unmyelinated nociceptive units in two skin areas of the rat.Brain Res. 267, 81–92, 1983.

  55. 55.

    Franklin K.B.J. andKelly S.J.: Sympathetic control of tryptophane uptake and morphine analgesia in stressed rats.Eur. J. Pharmacol. 126, 145–150, 1986.

  56. 56.

    Furer M. andHardy J.D.: The reaction to pain as determined by the galvanic skin response.Proc. Ass. Res. Nerv. Dis. 29, 72–89, 1950.

  57. 57.

    Gemmel R.T. andHales J.R.S.: Cutaneous arteriovenous anastomoses present in the rat tail but absent from the ear of the rat.J. Anat. 124, 355–358, 1977.

  58. 58.

    Gibbs N.M., Larach D.R., Skeehan T.M. andSchuler H.G.: Halothane induces depressor responses to noxious stimuli in the rat.Anesthesiology 70, 503–510, 1989.

  59. 59.

    Gomes C., Svensson T.H. andTrolin G.: Evidence for the involvement of central noradrenergic neurons in the cardiovascular depression induced by morphine in the rat.J. Neural. Transm. 39, 33–46, 1976.

  60. 60.

    Gomes C., Svensson T.H. andTrolin G.: Effects of morphine on central catecholamine turnover, blood pressure and heart rate in the rat.Naunyn Smiederberg’s Arch. Pharmacol. 294, 141–147, 1976.

  61. 61.

    Granat F.R. andSaelens J.K.: Effect of stimulus intensity on the potency of some anagetic agents.Arch. Int. Pharmacodyn. Ther. 205, 52–60, 1973.

  62. 62.

    Gray W., Osterberg A. andScuto T.: Measurement of the analgesic efficacy and potency of pentazocine by the d’amour and smith method.J. Pharmacol. Exper. Ther. 172, 154–162, 1970.

  63. 63.

    Guirimand F., Strimbu-Gozariu M., Willer J.C. andLe Bars D.: Effects of mu, delta and kappa antagonists on the depression of a C-fiber reflex by intrathecal morphine and DAGO in the rat.J. Pharmacol. Exper. Ther. 269, 1007–1020, 1994.

  64. 64.

    Guirimand F., Chauvin M., Willer J.C. andLe Bars D.: Effects of intravenous morphine and buprenorphine upon a C-fibre reflex in the rat.J. Pharmacol. Exper. Ther. 273, 830–841, 1995.

  65. 65.

    Hammond D.L.:Inference of pain and its modulation from simple behaviors.In: «Issues In Pain Management» Chapman C.R. and Loeser J.D. (eds):Raven Press, New York, 69–91, 1989.

  66. 66.

    Hamon I.: Voies anatomiques de la douleur chez le nouveau-né prématuré.Arch. Pédriatr. 3, 1006–1012, 1996.

  67. 67.

    Han J.S. andRen M.F.: The importance of monitoring tail-skin temperature in measuring tail-flick latency.Pain 46, 117, 1991.

  68. 68.

    Handwerker H.O. andKobal G.: Psychophysiology of experimentally induced pain.Physiol. Rev. 73, 639–671, 1993.

  69. 69.

    Hardy J.D.: Threshold of pain and reflex contraction as related to noxious stimuli.J. Applied. Physiol. 5, 725–739, 1953.

  70. 70.

    Hardy J.D.: Body temperature regulation.In: «Medical physiology», vol. 2, V. Mountcastle (ed), Mosby, St Louis, 1417–1456, 1980.

  71. 71.

    Hardy J.D., Wolff H.G. andGoodell H.: Studies on pain. A new method for measuring pain threshold, observation on spatial summation of pain.J. Clin. Invest. 19, 649–657, 1940.

  72. 72.

    Hardy J.D., Wolff H.G. andGoodell H.: The pain threshold in man.Proc. Ass. Res. Nerv. Dis. 23, 1–15, 1943.

  73. 73.

    Hardy J.D., Wolff H.G. andGoodell H.:Pain sensation and reaction. Williams and Wilkins, Baltimore, 435 pp., 1952.

  74. 74.

    Hardy J.D., Hammel H.T. andMurgatroyd D.: Spectral transmittance and reflectance of excised human skin.J. Appl. Physiol. 9, 257–264, 1956.

  75. 75.

    Hardy J.D., Stoll A.M., Cunningham D., Benson W.M. andGreene L.: Resonses of the rat to thermal radiation.Am. J. Physiol. 189, 1–5, 1957.

  76. 76.

    Hargreaves K., Dubner R., Brown F., Flores C. andJoris J.: A new and sensitive method for measuring thermal nociception in cutaneus hyperalgesia.Pain 32, 77–88, 1988.

  77. 77.

    Harris L.S. andPierson A.K.: Some narcotic antagonists in the benzomorphan series.J. Pharmacol. Exper. Ther. 143, 141–148, 1964.

  78. 78.

    Hayes R.L., Bennet G.J., Newlon P.G. andMayer D.J.: Behavioral and physiological studies of non-narcotic analgesia in the rat elicited by certain environmental stimuli.Brain Res. 155, 69–90, 1978.

  79. 79.

    Hendershot L.C. andForsaith J.: Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and non-analgesics.J. Pharmacol. Exper. Ther. 125, 237–240, 1959.

  80. 80.

    Hill H.E., Belleville R.E. andWikler A.: Reduction of pain-conditioned anxiety by analgesic doses of morphine in rats.Proc. Soc. exp. Biol. 86, 881–884, 1954.

  81. 81.

    Hitchens J.T., Goldstein S., Shemano I. andBeiler J.M.: Analgesic effects of irritants in threee models of experimentally-induced pain.Arch. Int. Pharmacodyn. 169, 384–393, 1967.

  82. 82.

    Holmberg H. andSchouenborg J.: Postnatal development of the nociceptive withdrawal reflexes in the rat, a behavioural and electromyographic study.J. Physiol. 493, 239–252, 1996.

  83. 83.

    Holtzman S.G.: Effects of morphine and narcotic antagonists on avoidance behavior in the squirrel monkey.J. Pharmaco. Exp. Ther. 196, 145–155, 1978.

  84. 84.

    Holzer P.: Capsaicin, cellular targets, mechanisms of action, and selectivity for thin sensory neurons.Pharmacol. Rev. 43, 143–201, 1991.

  85. 85.

    Hunskaar H.S., Berge O.G. andHole K.: A modified hot-plate test sensitive to mild analgesics.Behav. Brain Res. 21, 101–108, 1986.

  86. 86.

    Illitch P.A., King T.E. andGrau J.W.: Impact of shock on pain reactivity, I Whether hypo- or hyperalgesia is observed depends on how pain reactivity is tested.Animal Behavior Processes 21, 331–347, 1995.

  87. 87.

    Jackson H.: The evaluation of analgesic potency of drugs using thermal stimulation in the rat.Br. J. Pharmacol. 7, 196–203, 1952.

  88. 88.

    Jensen R.A., Messing R.B., Spielher V.R., Martinez J.L. Jr,Vasquez B.J. andMcGaugh J.L.: Memory, opiate receptors and aging.Peptides 1, 197–201, 1980.

  89. 89.

    Jensen T.S. andYaksh T.L.: Comparison of the antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in the rat.Brain Res. 363, 99–113, 1986.

  90. 90.

    Jourdan D., Ardid D., Chapuy E., Eschalier A. andLe Bars D.: Audible and ultrasonic vocalization elicited by single electrical nociceptive stimuli to the tail in the rat.Pain 63, 237–249, 1995.

  91. 91.

    Jourdan D., Ardid D., Chapuy Le Bars D. andEschalier A.: Effect of analgesics on audible and ultrasonic pain-induced vocalization in the rat.Life Sci. 63, 1761–1768, 1998.

  92. 92.

    Jurna I. andHeinz G.: Differential effects of morphine and opioid analgesics on A and C fiber-evoked activity in ascending axons of the rat spinal cord.Brain Res. 171, 573–576, 1979.

  93. 93.

    Kallina C.F. andGrau J.W.: Tail-flick test-I Impact of a suprathreshold exposure to radiant heat on pain reactivity in rats.Physiol. Behav. 58, 161–168, 1995.

  94. 94.

    Kayser V. andGuilbaud G.: The analgesic effects of morphine but not those of the enkephalinase inhibitor thiorphan, are enhanced in arthritic rats.Brain Res. 267, 131–138, 1983.

  95. 95.

    Kelly D.D.: The role of endorphins in stress-induced analgesia.Ann. New York Acad. Sci. 398, 260–271, 1982.

  96. 96.

    Kelly S.J. andFranklin K.B.J.: Evidence that stress augments morphine analgesia by increasing brain tryptophan.Neurosci. Lett. 44, 305–310, 1984.

  97. 97.

    Kelly S.J. andFranklin K.B.J.: Electrolytic raphe magnus lesions blocks analgesia induced by a stress-morphine interaction but not analgesia induced by morphine alone.Neurosci. Lett. 52, 147–152, 1984.

  98. 98.

    Khan A.A., Raja S.N., Manning D.C., Campbell J.N. andMeyer R.A.: The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys.Somatosensory and Motor Res. 9, 97–106, 1992.

  99. 99.

    Kirkwood P.A., Schomburg E.D. andSteffens H.: Facilitatory interactions in spinal reflex pathways from nociceptive cutaneous afferents and identified secondary spindle afferents in the cat.Exp. Brain Res. 68, 657–660, 1987.

  100. 100.

    Kiyatkin E.A.: Nociceptive sensitivity/behavioural reactivity regulation during aversive states of different nature, its mediation by opioid peptides.Int. J. Neurosci. 44, 91–110, 1989.

  101. 101.

    Kiyatkin E.A.: Neurobiological background of pain and analgesia, the attempt at revaluation according to position of the organism’s adaptative activity.Int. J. Neurosci. 52, 125–188, 1990.

  102. 102.

    Komisaruk B.R. andWallman J.: Antinociceptive effects of vaginal stimulation in rats, neurophysiological and behavioral studies.Brain Res. 137, 85–107, 1977.

  103. 103.

    Kornetsky C.: Effects of anxiety and morphine on the anticipation and perception of painful radiant thermal stimuli.J. Comp. Physiol. Psychol. 47, 130–132, 1954.

  104. 104.

    Kraus E. andLe Bars D.: Morphine antagonizes inhibitory controls of nociceptive reactions, triggered by visceral pain in the rat.Brain Res. 379, 151–156, 1986.

  105. 105.

    Kraus E., Besson J.M. andLe Bars D.: Behavioral model for Diffuse Noxious Inhibitory Controls, DNIC:, potentiation by 5-hydroxytryptophan.Brain Res. 231, 461–465, 1982.

  106. 106.

    Kraus E., Le Bars D. andBesson J.M.: Behavioral confirmation of «Diffuse Noxious Inhibitory Controls», DNIC: and evidence for a role of endogenous opiates.Brain Res. 206, 495–499, 1981.

  107. 107.

    Labrecque G., Vanier M.C.: Biological rhythms in pain and in the effects of opioid analgesics.Pharmacol. and Therap. 68, 129–147, 1995.

  108. 108.

    Lai Y.Y. andChan S.H.H.: Shortened pain response time following repeated algesiometric test in rats.Physiol. and Behav. 28, 1111–1113, 1982.

  109. 109.

    Laska E.M., Sunshine A., Wanderling J.A. andMeisner M.J.: Quantitative differences in aspirin analgesia in three models of clinical pain.J. Clin. Pharmacol. 22, 531–542, 1982.

  110. 110.

    Le Bars D., Calvino B., Villanueva L. andCadden S.:Physiological approaches to counter-irritation phenomena.In: «Stress-induced analgesia», Tricklebank M.D. and Carzon G. (eds): John Wiley, New-York, 67–101, 1984.

  111. 111.

    Le Bars D., Guilbaud G., Jurna I. andBesson J.M.: Differential effects of morphine on response of dorsal horn lamina V type cells elicited by A and C fibre stimulation in the spinal cat.Brain Res. 115, 518–524, 1976.

  112. 112.

    Le Bars D., Willer J.C., De Broucker T. andVillanueva L.:Neurophysiological mechanisms involved in the pain-relieving effects of counter-irritation and related techniques.In: «Scientific basis of acupuncture», B. Pomerantz and G. Stüx (eds), Springer Berlin, 79–112, 1989.

  113. 113.

    Le Bars D., Gozariu M. andCadden S.W.: L’évaluation de la douleur aiguë chez l’animal d’expérience.Ann. Fr. Anesth. Réanim., sous presse.

  114. 114.

    Lichtman A.H., Smith F.L. andMartin B.R.: Evidence that the antinociceptive tail-flick response is produced independently from changes in either tail-skin temperature or core temperature.Pain 55, 283–295, 1993.

  115. 115.

    Lipkin M. andHardy J.D.: Measurement of some thermal properties of human tissues.J. Applied. Physiol. 7, 212–217, 1954.

  116. 116.

    Lloyd-Thomas A.R. andFitzgerald M.: Do fetuses feel pain? Reflex responses do not necessarily signify pain.Brit. Med. J. 313, 797–798, 1996.

  117. 117.

    Loux J.J., Smith S. andSalem H.: Comparative analgesic testing of various compounds in mice using writhing techniques.Arzneim Forsch 28, 1644–1647, 1978.

  118. 118.

    Lovick T.A.: Central nervous system integration of pain control and autonomic function.News in Physiol. Sci. 6, 82–86, 1991.

  119. 119.

    Lovick T.A.:Integrated activity of cardiovascular and pain regulatory role in adaptative behavioural responses.Progress in Neurobiology 40, 631–644, 1993.

  120. 120.

    Lundberg A.:Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways.In: “Brain Stem Control of Spinal Mechanisms», Sjölund B. and Björklund A. (eds),Elsevier, Amsterdam, 179–224, 1982.

  121. 121.

    Luttinger D.: Determination of antinociceptive efficacy of drugs in mice using different water temperatures in a tail immersion test.J. Pharmacol. Methods 13, 351–357, 1985.

  122. 122.

    Lynn B.: Capsaicin, actions on nociceptive C-fibres and therapeutic potential.Pain 41, 61–69, 1990.

  123. 123.

    Lynn B. andBaranowski R.: A comparison of the relative numbers and properties of cutaneous nociceptive afferents in different mammalian species. In: «Fine afferent nerve fibers and pain», R.F. Schmidtet al. (eds), Weinheim VCH, 86–94, 1987.

  124. 124.

    McMahon S. andKoltzenburg M.: The changing role of primary afferent neurones in pain.Pain 43, 269–272, 1990.

  125. 125.

    Meyer R.A., Campbell J.N. andRaja S.N.: Peripheral neural mechanisms of nociception. In: «Textbook of pain» P.D. Wall and R. Melzack (eds), Churchill Livingston, 1994, 13–44, 1980.

  126. 126.

    Milne R.J. andGamble G.D.: Habituation to sham testing procedures modifies tail-flick latencies, effects on nociception rather than vasomotor tone.Pain 39, 103–107, 1989.

  127. 127.

    Mitchell D. andHellon R.F.: Neuronal and behavioral responses in rats during noxious stimulation of the tail.Proc. Roy. Soc. B 177, 169–194, 1977.

  128. 128.

    Montagne-Clavel J. andOliveras J.L.: The «plantar test» apparatus, Ugo Basile Biological Apparatus:, a controlled infrared noxious radiant heat stimulus for precise withdrawal latency measurement in the rat, as a tool for humans?Somatosensory and Motor Research. 13, 215–223, 1996.

  129. 129.

    Ness T.J. andGebhart G.F.: Centrifugal modulation of the rat tail flick reflex evoked by graded noxious heating.Brain Res. 386, 41–52, 1986.

  130. 130.

    O'Callaghan J.P. andHolzman S.G.: Quantification of the analgesic activity of narcotic antagonists by a modified hot plate procedure.J. Pharmacol. Exper. Ther. 192, 497–505, 1975.

  131. 131.

    Ochoa J. andMair W.G.: The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells.Acta Neuropathologica. 13, 197–216, 1969.

  132. 132.

    Paalzow G. andPaalzow L.: Morphine-induced inhibition of different pain responses in relation to the regional turnover of rat brain noradrenaline and dopamine.Psychopharmacologia 45, 9–20, 1975.

  133. 133.

    Pircio A.W., Fedele C.T. andBierwagen M.E.: A new method for adjuvant induced arthritis in the rat.Eur. J. Pharmacol. 31, 207–215, 1975.

  134. 134.

    Pong S.F., Demuth S.M., Kinney C.M. andDeegan P.: Prediction of human analgesic dosages of nonsteroidal anti-inflammatory drugs, NSAIDs: from analgesic ED50 values in mice.Arch. Pharmacodyn. Therap. 273, 212–220, 1985.

  135. 135.

    Price D.D. andBarber J.: An analysis of factors that contribute to the efficacy of hypnotic analgesia.J. Abnorm. Psychol. 96, 46–51, 1987.

  136. 136.

    Price D.D., Von Der Gruen A., Miller J. andRafii A.: A psychophysical analysis of morphine analgesia.Pain 22, 261–269, 1985.

  137. 137.

    Rand R.P., Burton A.C. andIng T.: The tail of the rat, in temperature regulation and acclimatation.Can. J. Physiol. Pharmacol. 43, 257–267, 1965.

  138. 138.

    Randall L.O. andSelitto J.J.: A method for measurement of analgesic activity on inflammed tissue.Arch. Int. Pharmacodyn. Ther. 111, 409–419, 1957.

  139. 139.

    Randich A. andMaixner W.: Interactions between cardiovascular and pain regulatory systems.Neurosci. Biobehav. Rev. 8, 343–367, 1984.

  140. 140.

    Randich A., Thurston C.L., Ludwig P.S., Timmerman M.R. andGebhart G.F.: Antinociception and cardiovascular responses produced by intravenous morphine, the role of vagal afferents.Brain Res. 543, 256–270, 1991.

  141. 141.

    Rey R.: Histoire de la douleur. La découverte, Paris, 1993.

  142. 142.

    Ren M.F. andHan J.S.: Rat tail flick acupuncture analgesia.Chin. Med. J. 92, 576–582, 1979.

  143. 143.

    Romer D.: Pharmacological evaluation of mild analgesics.Br. J. Clin. Pharmacol. 10 Suppl. 2, 47S-251S, 1980.

  144. 144.

    Rosland J.H.: The formalin test in mice, the influence of ambient temperature.Pain 45, 211–216, 1991.

  145. 145.

    Sandkkühler J., Treier A.C., Liu X.G. andOhnimus M.: The massive expression of c-fos protein in spinal dorsal horn neurons is not followed by long-term changes in spinal nociception.Neuroscience 73, 657–666, 1996.

  146. 146.

    Sato A., Sato Y., Shimada F. andTorigata Y.: Varying changes in heart rate produced by nociceptive stimulation of the skin in rats at different temperatures.Brain Res. 110, 301–311, 1976.

  147. 147.

    Sato A., Sato Y. andSchmidt R.F.: The impact of somatosensory input on autonomic functions.Rev. Physiol. Biochemi. Pharmacol. 130, 1–328, 1997.

  148. 148.

    Scadding J.W.: The permanent anatomical effects of neonatal capsaicin on somatosensory nerves.J. Anatomy 131, 471–482, 1980.

  149. 149.

    Schmidt R.F. The articular polymodal nociceptor in health and disease.Progress. Brain Res. 113, 53–81, 1996.

  150. 150.

    Schmidt R.F., Schaible H.G., Messlinger K., Heppelmann B., Hanesch U. andPawlak K.:Silent and active nociceptors, structures, functions and clinical implications.In: «Progress in pain research and management». Proceedings of 7th World Congress on Pain, vol. 2, Gebhart G.F., Hammond D.L. and Jensen T.S. (eds),IASP Press, Seattle, 213–250, 1994.

  151. 151.

    Schoenenfeld A.D., Lox C.D., Chen C.H. andLutherer L.O.: Pain threshold changes induced by acute exposure to altered ambient temperature.Peptides 6, 19–22, 1985.

  152. 152.

    Schomburg E.D.: Spinal sensorimotor systems and their supraspinal control.Neurosci. Res. 7, 265–340, 1990.

  153. 153.

    Schomburg E.D.: Restrictions on the interpretation of spinal reflex modulation in pain and analgesia research.Pain Forum 6, 101–109, 1997.

  154. 154.

    Schulze G.E. andPaul M.G.: Effects of morphine sulfate on operant behavior in Rhesus monkey.Pharmacol. Biochem. Behav. 38, 77–83, 1991.

  155. 155.

    Shaw J.S., Rourke J.D. andBurns K.M.: Differential sensitivity of antinociceptive tests to opioid agonists and partial agonists.Br. J. Pharmacol. 95, 578–584, 1988.

  156. 156.

    Shimizu T.: Tooth pre-pain sesation elicited by electrical stimulation.J. Dent. Res. 43, 467–475, 1964.

  157. 157.

    Siegmund E., Cadmus R. andLu G.: Screening analgesics, including aspirin-type compound, based on the antagonism of chemically induced «writhing» in mice.J. Pharmacol. Exp. Therap. 119, 184–193, 1957.

  158. 158.

    Smith G.M. andBeecher H.K.: Measurement of «mental clouding» and other subjective effects of morphine.J. Pharmacol. Exp. Ther. 126, 5–62, 1959.

  159. 159.

    Steffens H. andSchomburg E.D.: Convergence in segmental reflex pathways from nociceptive and non-nociceptive afferents to alphamotoneurones in the cat.J. Physiol. 466, 191–211, 1993.

  160. 160.

    Stein E.A.: Morphine effects on the cardiovascular system of awake, freely behaving rats.Arch. Intern. Pharmacodyn. Therap. 223, 54–63, 1976.

  161. 161.

    Stolwijk J.A.J. andHardy J.D.: Skin and subcutaneous temperature changes during exposure to intense thermal radiation.J. Applied. Physiol. 20, 1006–1013, 1965.

  162. 162.

    Suh H.H., Fujimoto J.M. andTseng L.F.: Different radiant heat intensities differentiate intracerebroventricular morphine- from ß-endorphine-induced inhibition of the tail-flick response in the mouse.Eur. J. Pharmacol. 213, 337–341, 1992.

  163. 163.

    Szolcsányi J.:Actions of capsaicin on sensory receptors.In: «Capsaicin in the study of pain», Wood J. (Ed) Academic Press, London, 1–26, 1993.

  164. 164.

    Taber RI:Predictive value of analgesic assays in mice and rats.In: «Narcotic antagonists», Advances in Biochemical PsychoPharmacology, vol. 8, Braude M.C., Harris L.S., May E.L., Smith J.P. and Villareal J.E. (eds).Raven Press, New York, 191–211, 1974.

  165. 165.

    Taber R.I., Greenhouse D.D. andIrwin S.: Inhibition of phenylquinone-induced writhing by narcotic antagonists.Nature 204, 189–190, 1964.

  166. 166.

    Thurston C.L., Starnes A. andRandich A.: Changes in nociception, arterial blood pressure and heart rate produced by intravenous morphine in the conscious rat.Brain Res. 612, 70–77, 1993.

  167. 167.

    Tjolsen A. andHole K.: The effect of morphine on core and skin temperature in rats.Neuroreport 3, 512–514, 1992.

  168. 168.

    Tjolsen A. andHole K.:Animal models of analgesia.In: The Pharmacology of Pain, edited by A. Dickenson and J.M. Besson, Handbook of Experimental Pharmacology,Springer-Verla, 1–20, 1997.

  169. 169.

    Tjolsen A., Lund A., Eide P.K., Berge O.G. andHole K.: The apparent hyperalgesic effect of a serotonin antagonist in the tail flick test is mainly due to increased tail skin temperature.Pharmacol. Biochem. Behav. 32, 691–605, 1988.

  170. 170.

    Tjolsen A., Berge O.G., Hunskaar S., Rosland J.H. andHole K.: The formalin test, an evaluation of the method.Pain 51, 5–17, 1992.

  171. 171.

    Tjolsen A., Lund A., Eide P.K., Berge O.G. andHole K.: An improved method for tail-flick testing with adjustment for tail-skin temperature.J. Neurosci. Methods 26, 259–265, 1989.

  172. 172.

    Tjolsen A., Rosland J.H., Berge O.G. andHole K.: The increasing temperature hot plate test, an improved test of nociception in mice and rats.J. Pharmacol. Methods 25, 241–250, 1991.

  173. 173.

    Tsuruoka M., Matsui A. andMatsui Y.: Quantitative relationship between the stimulus intensity and the response magnitude in the tail flick reflex.Physiol. Behav. 43, 79–63, 1988.

  174. 174.

    Vidal C., Suaudeau C. andJacob J.: Regutation of body temperature and nociception induced by non-noxious stress in rat.Brain Res. 297, 1–10, 1984.

  175. 175.

    Vierck C.J. andCooper B.Y.: Guideline for assessing pain reactions and pain modulation in laboratory animal subjects.In: Advances in pain research and therapy, vol. 6,Raven press, Kruger L. and Liebeskind J.C. (eds), New York, 305–322, 1984.

  176. 176.

    Vierck C.J. andCooper B.Y.: Vocalization as measures of pain in monkeys.Pain 26, 393–407, 1986.

  177. 177.

    Willette R.N. andSapru H.N.: Peripheral versus central cardiorespiratory effects of morphine.Neuropharmacology 21, 1019–1026, 1982.

  178. 178.

    Winder C.V., Pfeiffer C.C. andMaison G.L.: The nociceptive contraction of the cutaneous muscle of the guinea pig as elicited by radiant heat with observations on the mode of action of morphine.Arch. Int. Pharmacodyn. 72, 329–359, 1946.

  179. 179.

    Winter C.A. andFlakater L.: The relation between skin temperature and the effect of morphine upon the response to thermal stimuli in the albino rat and the dog.J. Pharmacol. 109, 183–188, 1953.

  180. 180.

    Winter C.A. andFlakater L.: Nociceptive thresholds as affected by parenteral administration of irritants and of various antinociceptive drugs.J. Pharmacol. Exper. Ther. 148, 373–379, 1965.

  181. 181.

    Winter J., Bevan S. andCampbell E.A.: Capsaicin and pain mechanisms.Br. J. Anaesth. 75, 157–168, 1995.

  182. 182.

    Yarnitsky D. andOchoa J.L.: Studies of pain sensation in man, perception thresholds, rate of stimulus rise and reaction time.Pain 40, 85–91, 1990.

  183. 183.

    Yeomans D.C. andProudfit H.K.: Characterization of the foot withdrawal response to noxious radiant heat in the rat.Pain 59, 85–94, 1994.

  184. 184.

    Yeomans D.C., Proudfit H.K.: Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat, electrophysiological evidence.Pain 68, 141–150, 1996.

  185. 185.

    Yeomans D.C., Cooper B.Y. andVierck C.J.: Effects of systemic morphine on responses of primates to first or second pain sensations.Pain 66, 253–263, 1996.

  186. 186.

    Yeomans D.C., Pirec V. andProudfit H.K.: Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat, behavioral evidence.Pain 68, 133–140, 1996.

  187. 187.

    Young A.A. andDawson N.J.: Evidence for on-off control of heat dissipation from the tail of the rat.Can. J. Physiol. Pharmacol. 60, 392–398, 1982.

  188. 188.

    Zachariou V., Goldstein B.D. andYeomans D.C.: Low but not high rate noxious radiant skin heating evokes a capsaicin-sensitive increase in spinal cord dorsal horn release of substance P.Brain Res. 752, 143–150, 1997.

  189. 189.

    Zamir N. andMaixner W.: The relationship between cardiovascular and pain regulatory systems.Ann. NY. Acad. Sci. 467, 371–384, 1986.

  190. 190.

    Zimet P.O., Wynn R.L., Ford R.D. andRudo F.G.: Effects of hot plate temperature on the antinociceptive activity of mixed opioid agonistantagonist compounds.Drug Development Res. 7, 277–280, 1986.

Download references

Author information

Correspondence to D. Le Bars.

Additional information

Texte présenté lors du Congrès SFD-SOFRED des 15–17 juin 2000.

About this article

Cite this article

Le Bars, D. Regard critique sur les modèles animaux de douleur aiguë. Doul. et Analg. 14, 21–38 (2001). https://doi.org/10.1007/BF03007507

Download citation


  • Acute pain
  • behaviour
  • reflexes
  • Aδ-fibres
  • C-fibres
  • learning
  • anxiety
  • vegetative system