Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral analysis: principle and clinical applications

Abstract

This review article describes the principle and clinical applications of spectral analysis. Spectral analysis provides a spectrum of the kinetic components which are involved in the regional uptake and partitioning of tracer from the blood to the tissue. This technique allows the tissue impulse response function to be derived with minimal modeling assumptions. Spectral analysis makes noa priori assumptions regarding the number of compartments or components required to describe the time course of tracer in the tissue. Spectral analysis can be applied to various dynamic data acquired by planar scintigraphy, single photon emission computed tomography (SPECT) or positron emission tomography (PET) as an alternative approach to compartment analysis. This analysis appears to be clinically useful, because it not only facilitates the interpretation of dynamic scintigraphic, SPECT or PET data, but also simplifies comparisons between regions and between subjects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Tobler HJ, Engel G. Affinity spectra: a novel way for the evaluation of equilibrium binding experiments.Naunyn-Schmiedebergs Arch Pharmacol 1983; 322: 183–192.

  2. 2.

    Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies.J Cereb Blood Flow Metab 1993; 13: 15–23.

  3. 3.

    Lawson CL, Hanson RJ.Solving least squares problems. Englewood Cliffs, New Jersey; Prentice-Hall, 1974; chapter 23.

  4. 4.

    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-d-glucose: validation of method.Ann Neurol 1979; 6: 371–388.

  5. 5.

    Huang SC, Phelps ME, Hoffman EJ, Siders K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man.Am J Physiol 1980; 238: E69-E82.

  6. 6.

    Kuwabara H, Evans AC, Gjedde A. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurement with [18F]fluorodeoxyglucose.J Cereb Blood Flow Metab 1990; 10: 180–189.

  7. 7.

    Murase K, Mochizuki T, Kikuchi T, Ikezoe J. Kinetic parameter estimation from compartment models using a genetic algorithm.Nucl Med Commun 1999; 20: 925–932.

  8. 8.

    Murase K, Tsuda T, Mochizuki T, Tanada S, Ikezoe J. Spectral analysis applied to hepatobiliary dynamic scintigraphy with99mTc-N-pyridoxyl-5-methyltryptophan.Nucl Med Commun 1997; 18: 1049–1056.

  9. 9.

    Fukui A, Murase K, Tsuda T, Fujii T, Ikezoe J. Assessment of liver function in chronic liver diseases and regional function of irradiated liver by means of99mTc-galactosyl-human serum albumin liver scintigraphy and quantitative spectral analysis.Ann Nucl Med 2000; 14: 467–476.

  10. 10.

    Murase K, Tsuda T, Mochizuki T, Ikezoe J. Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.Nucl Med Commun 1999; 20: 1041–1045.

  11. 11.

    Murase K, Tsuda T, Mochizuki T, Ikezoe J. A simplified method for the quantitative analysis of99mTc-GSA liver scintigraphy using spectral analysis.Nucl Med Commun 1998; 19: 219–227.

  12. 12.

    Sakamoto K, Higashino H, Sogabe I, Takahashi Y, Doi M, Yano M, et al. Clinical usefulness of spectral analysis and dynamic SPECT with99mTc-diethylenetriamine pentaacetic acid-galactosyl-human-serum albumin (99mTc-GSA): a quantitative assessment of liver function. The 49th Annual Meeting of the Society of Nuclear Medicine, June 15–19, 2002, Los Angeles, CA, USA (Abstract book, 130p).

  13. 13.

    Murase K, Yamazaki Y, Mochizuki T, Ikezoe J. Renal uptake rate measurement of99mTc-dimercaptosuccinic acid using spectral analysis.Nucl Med Commun 2002; 23: 265–273.

  14. 14.

    Murase K, Tanada S, Inoue T, Ikezoe J. Spectral analysis applied to dynamic single photon emission computed tomography studies withN-isopropyl-p-(123I)iodoamphetamine.Ann Nucl Med 1998; 12: 109–114.

  15. 15.

    Murase K, Inoue T, Fujioka H, Ishimaru Y, Akamune K, Yamamoto Y, et al. An alternative approach to estimation of the brain perfusion index for measurement of cerebral blood flow using technetium-99m compounds.Eur J Nucl Med 1999; 26: 1333–1339.

  16. 16.

    Murase K, Fujioka H, Inoue T, Ishimaru Y, Akamune A, Yamamoto Y, et al. Reproducibility of the brain perfusion index for measuring cerebral blood flow using technetium-99m compounds.Eur J Nucl Med 2001; 28: 1640–1646.

  17. 17.

    Takasawa M, Murase K, Oku N, Yoshikawa T, Osaki Y, Imaizumi M, et al. Assessment of acetazolamide reactivity in cerebral blood flow using spectral analysis and technetium-99m hexamethylpropylene amine oxime.J Cereb Blood Flow Metab 2002; 22: 1004–1009.

  18. 18.

    Takasawa M, Murase K, Oku N, Kawamata M, Imaizumi M, Yoshikawa T, et al. Automatic determination of brain perfusion index for measurement of cerebral blood flow using spectral analysis and99mTc-HMPAO.Eur J Nucl Med 2002; 29: 1443–1446.

  19. 19.

    Takasawa M, Murase K, Oku N, Kawamata M, Nagayoshi M, Osaki Y, et al. Interobserver variability of cerebral blood flow measurements obtained using spectral analysis and technetium-99m labeled compounds.Ann Nucl Med 2003; 17: 255–259.

Download references

Author information

Correspondence to Kenya Murase.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murase, K. Spectral analysis: principle and clinical applications. Ann Nucl Med 17, 427–434 (2003). https://doi.org/10.1007/BF03006429

Download citation

Key words

  • spectral analysis
  • principle
  • clinical applications
  • compartment analysis
  • dynamic scintigraphy
  • SPECT
  • PET