Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

REPERCUSSION SUR LE DEBIT SANGUIN CEREBRAL D’UNE PERFUSION DE THIOPENTAL

  • 214 Accesses

  • 2 Citations

Résumé

La protection du cerveau est devenue une préoccupation majeure pour ceux qui font face à des situations où une agression en menace son intégrité fonctionnelle. Les barbituriques ont fait ľobjet de nombreux travaux expérimentaux; cependant les données chez ľhomme font défaut en raison de la limitation des méthodes de mesures. Au cours de ce travail, huit patients ont reçu un bolus de thiopental 6 mg·kg-1 de thiopental suivi ďune perfusion de 14 mg·kg-1 ·heure{-1}. Le débit sanguin cérébral (CBF) mesuré à ľaide ďun traceur radioactif, soit le Xenon133 injecté dans ľartère carotide interne, a subi une baisse de 28 pour cent 20 minutes après le début de ľexpérience, baisse s’établissant à 30 pour cent après une heure ďinfusion de thiopental. Quant à la consommation cérébrale en oxygène (CMRo2), elle a diminué de 35 pour cent pour s’établir à 46 pour cent après une heure ďinfusion. Ces résultats tendent à confirmer que c’est en diminuant la fonction cérébrale (perte de conscience) que les barbituriques provoquent une baisse rapide et importante du débit sanguin cérébral. D’ailleurs, comme nous ľavons démontré, la baisse du CBF et de la CMRo2 est beaucoup plus lente par la suite si ľon en juge par les chiffres qu’on vient de rapporter. Si la protection du cerveau attribuée aux barbituriques est proportionnelle à cette baisse du débit sanguin cérébral, les quantités relativement faibles que nous avons utilisées au cours du présent travail sont certes efficaces à assurer une certaine protection au cerveau en cas ďinjures. De plus, à la dose que nous ľavons employé, le thiopental offre une stabilité cardio-vasculaire et un temps de réveil relativement court, ce qui, à notre avis, devient un atout précieux si nous voulons ľutiliser en neuro-anesthésie.

Summary

The protection of the brain is still one of the major concerns for those involved in the treatment of the severely injured and neurosurgical patients.

Although it is well known that barbiturates can afford some protection in experimental animals and in man by decreasing the cerebral metabolic rate of oxygen (CMRo2) and the cerebral blood flow (CBF), there are no precise data available in the medical literature as to how much thiopentone at a dose usually employed in clinical practice might decrease the CMRo2 and the CBF in man.

The cerebral blood flow, regional cerebral blood flow and the CMRo2 were measured in eight patients after an intra-arterial injection of Xenon133, according to a method described by Hoedt-Rasmussen and Paulson. Following this they were given a bolus of thiopentone 6 mg · kg-1 followed by an 0.4 per cent infusion of thiopentone adjusted to deliver 14 mg · kg-1 hourly. The measures were then repeated at 20. 40 and 60 minutes after induction time. Using this technique, a 28 per cent reduction in CBF was noted 20 minutes after the beginning of the experiment and a 35 per cent reduction in CMRo2 was also recorded, followed by a 30 per cent reduction in CBF and a 46 per cent reduction in CMRo2 one hour later.

This tends to confirm the hypothesis that the protection offered by the barbiturates is related to the loss of consciousness (loss of function) since the decrease in CBF and CMRo2 after one hour of infusion had somewhat plateaued. If the cerebral protection attributed to the barbiturates is proportional to the decrease in the CBF, then the relatively small doses employed in the present study would be sufficient to assure brain protection during an insult. Following the termination of the infusion, the arousal time was fairly rapid. It was also found that the decrease in the CBF and the CMRo2 was comparable to what has been found by other workers, using much higher dosage. Respiratory depression has been minimal as the\(Pa_{CO_2 } \)increased by only 0.8 kPa (6 mm Hg). This technique has also offered excellent stability from the cardiovascular standpoint. Consequently, it is suggested that thiopentone infusion might be the technique of choice for neuroradiological procedures such as pneumoencephalography and cerebral angiography.

Finally, assuming that the protection of the brain is related and proportional to the reduction in the CBF and the CMRo2 and, accordingly, to a relatively small dose of thiopentone as it is indicated in the present work, it is suggested that this mode of anaesthesia be revisited in neurosurgery and carotid surgery.

Bibliographie

  1. 1.

    Lassen, N.A. &Christensen, N.S. Physiology of cerebral blood flow. Brit. J. Anaesth.48: 719–734 (1976).

  2. 2.

    Smith, A.L., Hoff, J.T., Nielsen, S.L. &Larson, C.P. Barbiturate protection in acute focal cerebral ischemia. Stroke5: 1–7 (1974).

  3. 3.

    Michenfelder, J.D. &Theye, R.A. Cerebral protection by thiopental during hypoxia. Anesthesiology39: 510–17 (1973).

  4. 4.

    Shapiro, H.M., Galindo, A., Wyte, S.R. &Harris, A.B. Rapid intra-operative reduction of intracranial pressure with thiopentone. Brit. J. Anaesth.45: 1057–62 (1973).

  5. 5.

    Yatsu, F.M., Diamons, I., Grazinno, C. &Lindguist, P. Experimental brain ischemia: protection from irreversible damage with a rapidacting barbiturate (Methohexital). Stroke3: 726–32 (1972).

  6. 6.

    Theye, R.A. &Michenfelder, J.D. Theeffect of halothane on canine cerebral metabolism. Anesthesiology29: 1113–18 (1968).

  7. 7.

    Michenfelder, J.D. &Theye, R.A. The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology33: 430–39 (1970).

  8. 8.

    Hunter, R. Thiopentone supplemented anaesthesic for neurosurgery. Brit. J. Anaesth.44: 506–10 (1972).

  9. 9.

    Shapiro, H.M., Galindo, A., Wyte, S.R. &Harris, A.B. Acute intracranial hypertension during anesthetic induction. Partial control with thiopental. Europ. Neurol.8: 118–21 (1972).

  10. 10.

    Shapiro, H.M., Wyte, S.R., Harris, A.B. &Galindo, A. Acute intra-operative intracranial hypertension in neurosurgical patients., Anesthesiology37: 399–405 (1972).

  11. 11.

    Wells, B.A., Keats, A.S. &Cooley, D.A. Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carodid occlusion. Surgery54: 216–23 (1963).

  12. 12.

    Shapiro, H.M., Wyte, S.R. &Loesen, J. Barbiturate-augmented hypothermia for reduction of persistent intracranial hypertension. J. Neurosurg.40: 90–100 (1974).

  13. 13.

    Fitch, W. Anaesthesia for carotid artery surgery. Brit. J. Anaesth.48: 791–796 (1976).

  14. 14.

    Raudzens, M.D. &Cole, A.F.D. Thiopentone-lidocaine anaesthesia for pneumoencephalography. Can. Anaesth. Soc. J.21: 1–14 (1974).

  15. 15.

    Michenfelder. J.D., Milde. J.H. &Sundt, T.M. Cerebral protection by barbiturate anaesthesia. Arch. Neurol.33: 345–50 (1976).

  16. 16.

    Hoedt-Rasmussen, K., Sweinsdottis, E. &Lassen, N. A. Regional cerebral blood flow in man determined by intraarterial injection of radio-active inert gas. Circulation Res.18: 237–247 (1966).

  17. 17.

    Paulson, O.B., Crongwist, S. &Jeppesen, F.I. Regional cerebral blood flow: a comparison of 8 detector and 16 detector instrumentation. J. Nucl. Med.10: 164–173 (1969).

  18. 18.

    Astrup, P. The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood. Scand. J. Clin. Lab. Invest.17: 515–23 (1965).

  19. 19.

    Severinghaus, J.W. Blood gas calculator. J. Appl. Physiol.21: 1108–1110 (1966).

  20. 20.

    Prys-Roberts, C., Foex, P. &Hahn, C.E. Calculation of blood O2. Anesthesiology34: 581–583 (1971).

  21. 21.

    Kety, S.S. &Schmidt, C.F. The effects of altered tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest.27: 487–492 (1948).

  22. 22.

    Smith. A.L. &Wollman, H. Cerebral blood flow and metabolism. Anesthesiology36: 378–400 (1972).

  23. 23.

    Carlsson, C., Harp, J.R. &Siesjo, B.K. Metabolic changes in the cerebral cortex of the rat induced by intravenous pentothal-sodium®. Acta Anaesth. Scand. Supp.57: 7–17 (1975).

  24. 24.

    Rosomoff, H.L. Protective effects of hypothermia against pathological processes of the nervous system. Ann. N.Y. Acad. Sci.80: 475 (1959).

  25. 25.

    Alexander, S.C. Anesthesia and the cerebral circulation. Chap. I in Regional Refresher Courses in Anesthesiology. Vol. I. Ed. by S.G. Hershey, Lippincott. Philadelphia (1973).

  26. 26.

    Altenburg, B.M., Michenfelder, J.D. &Theye, R.A. Acute tolerance to thiopental in canine cerebral oxygen consumption studies. Anesthesioloogy31: 443–448 (1969).

  27. 27.

    McDowall, D.G. The influence of anaesthesia drugs and techniques on intracranial pressure. Chap. 5, p. 140 in “Basis and practice of neuroanaesthesia”. Ed. by E. Gordon, Excerpta Medica, Amsterdam (1975).

  28. 28.

    Lassen, N.A. &Tweed, W.A. Anaesthesia and cerebral blood flow. Chap 4 in “A Basis and practice of neuroanaesthesia”. Ed. by E. Gordon. Excerpta Medica, Amsterdam (1975).

  29. 29.

    Christensen, M.S., Brodersen, P., Olesen, J. &Paulson, O.B. Cerebral apoplexy (stroke) treated with or without prolonged, artifical hyperventilation. II: Cerebrospinal fluid acid-base balance and intracranial pressure. Stroke4: 620–631 (1973).

  30. 30.

    Ghoneim, M.M., Pandya, H.B., Kelley, S.E., Fischer, L.J. &Corry, R.J. Binding of thiopental to plasma protein. Anesthesiology45: 635–39 (1976).

  31. 31.

    Himwich, W.A., Homburger, E., Maresca, R. &Himwich, H.E. Brain metabolism in man: Unanesthetised and in pentothal narcosis. Amer. J. Psychiat.103: 689–696 (1947).

  32. 32.

    Pierce, E.C., Lambertsen, C.J., Deutoch, S., Chase, P.E., Linde, H.W., Dripps, R.D. &Price, H.L. Cerebral circulation and metabolism during thiopental anesthesia and hyperventilation in man. J. Clin. Invest.41: 1664–1670 (1962).

  33. 33.

    Kety, S.S. &Schmidt, C.F. Nitrous oxide method for quantitative determinations of cerebral blood flow in man: theory procedure and normal values. J. Clin. Invest.27: 476–483 (1948).

  34. 34.

    Cucchiara, R.F. &Michenfelder, J.D. The effect of interruption of the reticular activating system on metabolism in canine cerebral hemispheres before and after thiopental. Anesthesiology.39: 3–12 (1973).

  35. 35.

    Michenfelder. J.D. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology41: 231–236 (1974).

  36. 36.

    Kety, S.S., Woodfrodm, R.B., Harmel, M.H.,et al. Cerebral blood flow and metabolism in schizophrenia. The effects of barbiturate seminarcosis, insulin coma and electroshock. Am. J. Psychiatry,104: 765–770 (1948).

  37. 37.

    Stullkhen, G.H., Milde, J.H. &Michenfelder, J.D. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isofluranc and thiopental. Anesthesiology46: 28–34 (1977).

  38. 38.

    Smith. A.L. Effect of anesthetics and oxygen deprivation on brain blood flow and metabolism. Surg. Clin. N.A.:55: 819–836 (1975).

  39. 39.

    Landau, W.M., Freygang, W.H., Roland, C.P., Sokoloff, L. &Kety, S.S. The local circulation of the living brain; values in the unanes-thetised and anesthetised cat. Trans. Amer. Neurol. Ass.80: 125 (1955).

Download references

Author information

Correspondence to J. Coté or D. Simard or M. Rouillard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coté, J., Simard, D. & Rouillard, M. REPERCUSSION SUR LE DEBIT SANGUIN CEREBRAL D’UNE PERFUSION DE THIOPENTAL. Canad. Anaesth. Soc. J. 26, 269–276 (1979). https://doi.org/10.1007/BF03006286

Download citation