Advertisement

Journal of Solid-Phase Biochemistry

, Volume 1, Issue 1, pp 27–32 | Cite as

A microenvironmental redox shift at a charged surface detected by papain activity

  • A. J. Benesi
  • A. D. McLaren
Article
  • 53 Downloads

Abstract

The relative activity of an SH-enzyme, papain, is decreased by increasing the mole ratio of oxidizing disulfide to reducing thiol in solution. The same inverse relationship applies to papain adsorbed on charged clay particles, but electrostatic interactions among the charged particles and charged disulfides and thiols significantly shift the dependence. Papain activity thus reflects the microenvironmental redox potential in the vicinity of the charged particles. The redox pairs cystine dimethylester-cysteine ethylester, dithiodiglycolic acidmercaptoacetic acid, and dithiodiglycol-mercaptoethanol were used in the assays. A special form of the Boltzmann distribution must be used to calculate mole ratios of ions of different charge near a charged interface.

Keywords

Disulfide Thiol Kaolinite Papain Charged Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McLaren, A. D., andPacker, L. (1970) In Advances in Enzymology, Vol. 33: Nord, F. F. (ed.), Interscience Publishers, John Wiley and Sons, New York, p. 245.CrossRefGoogle Scholar
  2. 2.
    Katchalski, E., Silman, L, andGoldman, R. (1971) In Advances in Enzymology, Vol. 34: Nord, F. F. (ed.), Interscience Publishers, John Wiley and Sons, New York, p. 445.CrossRefGoogle Scholar
  3. 3.
    Wharton, C. W., Crook, E. M., andBrockleshurst, K. (1966) Eur. J. Biochem. 98: 420.Google Scholar
  4. 4.
    Engasser, J. M., andHorvath, C. (1975) Biochem. J. 145: 431.Google Scholar
  5. 5.
    Bull, H. B. (1971) An Introduction to Physical Biochemistry, 2nd edition, F. A. Davis Co., Philadelphia.Google Scholar
  6. 6.
    Mehrishi, J. N. (1972) In Progress in Biophysics, Butler, J., and Noble, D. (eds.), Pergamon Press, New York, p. 1.Google Scholar
  7. 7.
    Marshall, C. E. (1964) The Physical Chemistry and Mineralogy of Soils, Vol. I: Soil Materials, John Wiley and Sons, New York.Google Scholar
  8. 8.
    McLaren, A. D. (1954) J. Phys. Chem. 58: 129.CrossRefGoogle Scholar
  9. 9.
    Drenth, J., Jansonius, J., Koekoek, R., Wolthers, B. (1971) In The Enzymes, Vol. III, Boyer, P. (ed.), Academic Press, New York, p. 485.Google Scholar
  10. 10.
    Cecil, R., andMcPhee, J. R. (1959) In Advances in Protein Chemistry, Vol. XIV, Anfinsen, C. B., Anson, M. L., Bailey, K., and Edsall, J. T. (eds.), Academic Press, New York, p. 225.Google Scholar

Copyright information

© Humana Press Inc. 1976

Authors and Affiliations

  • A. J. Benesi
    • 1
  • A. D. McLaren
    • 1
  1. 1.Department of Soils and Plant NutritionUniversity of CaliforniaBerkeley

Personalised recommendations