Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Neuromuscular and cardiovascular effects of mivacurium chloride in surgical patients receiving nitrous oxide-narcotic or nitrous oxide-isoflurane anaesthesia

Abstract

The neuromuscular and cardiovascular effects of mivacurium chloride were studied during nitrous oxide-oxygen narcotic (fentanyl) (n = 90) and nitrous oxide-oxygen isoflurane (ISO) anaesthesia (n = 45). In addition, a separate group (n = 9) received succinylcholine during fentanyl anaesthesia to compare its neuromuscular effects with mivacurium. Mivacurium was initially administered as a single bolus in doses from 0.03 mg · kg−1 to 0.25 mg · kg−1 to study the dose-response relationships, as well as the cardiovascular effects of mivacurium. Neuromuscular block (NMB) was measured by recording the twitch response of the adductor pollicis muscle following ulnar nerve stimulation (0.15 Hz, 0.2 ms supramaximal voltage). The ED95 values for mivacurium were estimated to be 0.073 mg · kg−1 and 0.053 mg · kg−1 in the fentanyl and ISO groups respectively. The duration of block (time from injection to 95 per cent recovery) for a dose of 0.05 mg · kg− 1 mivacurium was 15.3 ± 1.0 min and 21.5 ± 1.3 min for fentanyl and ISO anaesthesia, respectively. The recovery index (25–75 per cent) between initial bolus dose (6.1 ± 0.5 min), repeat bolus doses (7.6 ± 0.6 min), mivacurium infusion (6.7 ± 0.7 min) and succinylcholine infusion (6.8 ± 1.8 min) were not significantly different. There was minimal change in mean arterial pressure (MAP) or heart rate (HR) following bolus doses of mivacurium up to 0.15 mg · kg−1. Bolus administration of 0.20 mg · kg−1 or 0.25 mg · kg−1 of mivacurium decreased MAP from 78.2 ± 2.5 to 64.0 ± 3.2 mmHg (range 12–59 per cent of control) (P < 0.05). The same doses when administered slowly over 30 sec produced minimal change in MAP or HR.

Résumé

Les effets cardiovasculaires et neuromusculaires du chlorure de mivacurium ont été étudiés lors d’une anesthésie au narcotique (fentanyl) protoxyde d’azote-oxygène (n = 90) et isoflurane (ISO) protoxyde d’azote-oxygéne (n = 45). En plus, un groupe séparé (n = 9) a reçu du succinylcholine lors d’une anesthésie au fentanvl afin de comparer ces effets neuromusculaires avec le mivacurium. Le mivacurium a été initialement administré comme un bolus unique les doses de 0,03 mg · kg−1 et 0,25 mg · kg−1 afin d’étudier la courbe dose-réponse et les effets cardiovasculaires du mivacurium. Le bloc neuromusculaire (NMB) a été mesuré en enregistrant la réponse au twitch de l’adducteur du pouce après stimulation du nerf cubital (0.15 Hz, 0.2 ms voltage supramaximal). Les valeurs de ED95 du mivacurium ont été estimées à 0,073 mg ·kg−1 et 0,053 mg · kg−1 respectivement pour le groupe fentanyl et ISO. La durée du bloc (temps à partir de l’injection à la recouvrance à 95 pour cent) pour une dose de 0,05 mg · kg−1’ de mivacurium était de 15,3 ± 1,0 min. et 21,5 ± 1,3 min. respectivement pour le groupe fentanyl et le groupe ISO. L’index de recouvrance (25–75 pour cent) entre le bolus initial (6,1 ± 0,7 min) la dose de rajout (7,6 ± 0,6 min) et la perfusion de mivacurium (6,7 ± 0,7 min) et la perfusion de succinycholine (6,8 ± 1,8 min) n’était pas significativement différent. On a observé des changements minimes dans la pression artérielle moyenne (MAP) ou la fréquence cardiaque (HR) après le bolus de mivacurium jusqu’à 0,15 mg · kg−1. Une administration en bolus de 0,20 mg · kg−1 ou 0,25 mg · kg−1 de mivacurium a diminué la pression artérielle moyenne de 78,2 ± 2,5 à 64.0 1 3,2 mmHg (écart de 12–59 pour cent du contrôle) (P < 0.05). Les mêmes doses lorsque administrées lentement au-dessus de 30 secondes ont produit des changements minimes de la pression artérielle moyenne et de la fréquence cardiaque.

References

  1. 1

    Savarese JJ, Kitz RJ. Does clinical anesthesia need new neuromuscular blocking agents? Anesthesiology 1975; 42: 236–9.

  2. 2

    Gronert GA, Dotin LN, Ritchey CR et al. Succinylcholine-induccd hyperkalemia in burned patients, Parts I & II. Anesth Analg, 1969; 48: 764–70, 958–62.

  3. 3

    Gronert GA, Theye RA. Pathophysiology of hyperkalemia induced by succinylcholine. Anesthesiology 1975; 43: 89–99.

  4. 4

    Cooperman LH. Succinylcholine induced hyperkalemia in neuromuscular disease. JAMA 1970; 213: 1867–71.

  5. 5

    Basta SJ, Savarese JJ, Ali HH et al. The neuromuscular pharmacology of BW 1090U in anesthetized patients. Anesthesiology 1985; 63: A318.

  6. 6

    Savarese JJ, Ali HH, Basta SJ et al. The clinical neuromuscular pharmacology of mivacurium chloride (BW 1090U) Anesthesiology 1988; 68: 723–32.

  7. 7

    Weber S, Brandom BW, Powers DM et al. Mivacurium (BW 1090U) induced neuromuscular blockade during nitrous oxide-isoflurane and nitrous oxide-narcotic anesthesia in adult surgical patients. Anesth Analg 1988; 67: 495–9.

  8. 8

    Caldwell JE, Kitts JB, Heine T, Fahey MR, Lynam DP, Miller RD. The dose-response relationship of mivacurium chloride in humans during nitrous oxide-fentanyl or nitrous oxide-enflurane anesthesia. Anesthesiology 1989; 70: 31–5.

  9. 9

    Sarner JB, Brandom BW, Woelfel SK et al. Clinical pharmacology of mivacurium chloride (BW B1090U) in children during nitrous oxide-halothane and nitrous oxide-narcotic anesthesia. Anesth Analg 1989; 68: 116–21.

  10. 10

    Goudsouzian NG, Alifimoff JK, Eberly C et al. Neuro-muscular and cardiovascular effects of mivacurium in children. Anesthesiology 1989; 70: 237–42.

  11. 11

    Savarese JJ, Ali HH, Basta SJ et al. The cardiovascular effects of mivacurium chloride (BW 1090U) in patients receiving nitrous oxide-opiate barbiturates anesthesia. Anesthesiology 1989, 70: 386–94.

  12. 12

    Litchfield JT, Wilcoxon JMF. A simplified method of evaluation dose-effect experiments. J Pharmacol Exp Ther 1945; 95: 99–113.

  13. 13

    Neter J, Wasserman W, Kutner MH. Applied linear regression models. Homewood, IL: Irwin 1983, 123–32.

  14. 14

    Morrison DF. Multivariate Statistical Methods. 2nd ed. NY: McGraw-Hill, 1976, 170–92.

  15. 15

    Rosner B. Fundamentals of Biostatistics, 2nd Ed. Boston: Busbury 1986, 419–424.

  16. 16

    Brown EM, Krishnaprasad DK, Smiler BG. Pancuronium for rapid induction technique for tracheal intubation. Can Anaesth Soc J 1979, 26: 489–91.

  17. 17

    Sokoll MD, Gergis SD, Mehta M, Ali NM, Lineberry C. Safety and efficacy of atracurium (BW33A) in surgical patients receiving fentanyl or isoflurane anesthesia. Anesthesiology 1983; 58: 450–5.

  18. 18

    Katz RD. Neuromuscular effects of d-tubocurarine, edrophonium and neostigmine in man. Anesthesiology 1967; 28: 327–36.

  19. 19

    Ali HH, Savarese JJ, Embree PB et al. Clinical pharmacology of BW 1090U continuous infusion. Anesthesiology 1986; 65: A282.

  20. 20

    Ramsey FM, Lebowitz PW, Savarese JJ, Ali HH. Clinical characteristics of long term succinylcholine neuromuscular blockade during Fentanyl anaesthesia. Anesth Analg 1980; 59: 110.

  21. 21

    Sokoll MD, Bastron RD. The duration of desensitization (phase 2) block after succinylcholine infusion. Anesth Analg 1967; 46: 682–9.

  22. 22

    Moss J, Rosow CE, Savarese JJ, Philbin DN, Kniffen KJ. Role of histamine in the hypotensive action of d’tubocurarine in humans. Anesthesiology 1981; 55: 19–25.

Download references

Author information

Correspondence to Won W. Choi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, W.W., Mehta, M.P., Murray, D.J. et al. Neuromuscular and cardiovascular effects of mivacurium chloride in surgical patients receiving nitrous oxide-narcotic or nitrous oxide-isoflurane anaesthesia. Can J Anaesth 36, 641–650 (1989). https://doi.org/10.1007/BF03005415

Download citation

Key words

  • anaesthetic techniques: balanced
  • anaesthetics, intravenous: fentanyl
  • anaesthetics, volatile: isoflurane
  • neuromuscular relaxants: mivacurium, succinylcholine
  • pharmacology: dose-response