Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Détection de contours: méthodes et études comparatives

Edge detection: Methods and comparative studies

Analyse

L’auteur présente quelques méthodes numériques de détection de contour apparues ces dernières années dans la littérature en les considérant d’un point de vue local (détection d’éléments de contour) et d’un point de vue plus global (suivi de contour); on les distingue suivant leur type (syntaxique ou paramétrique, itératif ou temps réel), et on donne des exemples d’utilisation. Enfin, on introduit quelques études de comparaison entre ces méthodes.

Abstract

The author presents some numerical methods for edge detection, which have appeared these last few years in the available literature; they are considered from a local point of view (detection of edge elements) and from a more global point of view (edge tracking). They are distinguished according to their type (syntactic or parametric, iterative or realtime). Some examples of utilization are given. And finally some comparative studies between these algorithms are introduced.

This is a preview of subscription content, log in to check access.

Bibliographie

  1. [1]

    Abdou (I. E.). Quantitative methods of edge detection.USCIPI Report 830. University of Southern California. Los Angeles, USA (1978).

  2. [2]

    Abele (L. W.), Wahl (F. W.), Tilgner (R. D.). Application of an edge detection system basing on the signal statistics of the processed images.Communication au Symposium sur l’InformatiqueMédicale, Toulouse (1978).

  3. [3]

    Ashkar (G. P., Modestino (J. W.). The contour extraction problem with biomédical applications.Computer Graphics and Image Processing, USA, (1978),7, n∘ 3, p. 331–355.

  4. [4]

    Bajcsy (R.),Tavakoli (M.). Computer recognition of roads from satellite pictures.IEEE Trans. SMC, USA, (1976),6, n∘ 9, p. 623–637.

  5. [5]

    Barba (D.). Critère de qualité visuelle et traitement d’image: une méthode de restauration d’images bruitées par filtrage adaptatif bidimensionnel.Measurement and Control, GB (juin 1977).

  6. [6]

    Basseville (M.), Espiau (B.). Détection de contours dans une image numérisée.Publication IRISA n∘ 109, (1978).

  7. [7]

    Basseville (M.), Espiau (B.). Une méthode séquentielle de détection de contours.Communication au 9eColloque GRETSI, Nice, (1979), à paraître.

  8. [8a]

    Bastien (P. L., Dunn (L. A.). Global transformations in Pattern Recognition of Bubble Chamber Photographs.IEEE Trans. C, USA, (1976),20, n∘ 9, pp. 995–1001.

  9. [8 b]

    Benveniste (A.), Richard (C.). Recursive edge detection and prediction in digital television pictures.Communication and Picture Coding Symposium. Ipswich. GB, (juil. 1979).

  10. [9]

    Biguereau (C.). Une application industrielle en reconnaissance des formes: tri automatique de pièces de fonderie.Thèse de Docteur-Ingénieur, Univ. Rennes, UER Math. Info., (1978), (A/82/9).

  11. [10]

    Bijaoui (A.). Compression de l’informatique dans les images; application en astronomie et astrophysique. (Rapport final d’ATP.) Nice, INAG. Centre de dépouillement des clichés astronomiques. Observ. de Nice, Le Mont Gros, (1977).

  12. [11]

    Chien (R. T.), Peterson (L. J.). Image compression with feature extraction and reconstruction.Proc. IEEE-CS Workshop on picture data description and management. Univ. of Illinois, USA, (avr. 1977).

  13. [12]

    Chow (C. K.), Kaneko (T.). Boundary detection of radiographic images by a threshold method. Frontiers ofPattern Recognition, USA, (1972), ed. S. Watanabe, p. 61–82.

  14. [13]

    Crozet (P.), Chaume (D.). Traitement des photos NIMBUS-5.Congrès AFCET-IRIA, Châtenay, (1978).

  15. [14]

    Davis (L. S.). A survey of edge detection techniques.Computer Graphics & Image Processing, USA, (1975),4, pp. 248–270.

  16. [15]

    Davis (L. S.). Understanding shape: angles and sides.IEEE Trans. C, USA, (1977),26, n∘ 3, pp. 236–242.

  17. [16]

    Eberlein (S.). An iterative gradient edge detection algorithm. Digital Picture,Processing. A. Rosenfeld, A. C. Kak., New York (1976), Academic Press, pp. 245–253.

  18. [17]

    Estournet (D.). Etude statistique d’un signal d’image.Onde électrique, Fr. (1969),49, n∘ 8, n∘ 510, pp. 848–857.

  19. [18]

    Faugeras (O. D.),Pratt (W. K.). Stochastic-based visual texture feature extraction. Soumis à publication dansIEEE Trans. C, USA (numéro spécial de mai 1979).

  20. [19]

    Fram (J. R.),Deutsch (E. S.). On the quantitative evaluation of edge detection schemes and their comparison with human performance.IEEE Trans. C, USA, (1975),24, n∘ 6, pp. 616–628.

  21. [20]

    Fram (J. R.),Deutsch (E. S.). A quantitative study of the orientation bias of some edge detector schemes.IEEE Trans. C, USA, (1978),27, n∘ 3, pp. 205–213.

  22. [21]

    Frei (W.),Chen (C. C.). Fast boundary detection: a generalization and a new algorithm.IEEE Trans. C, USA, (1977),26, n∘ 10, pp. 988–998.

  23. [22]

    Frieden (B. R.). A new restoring algorithm for the preferential enhancement of edge gradients. SPIE/OSA.Image Processing, USA, (1976),74, pp. 44–48.

  24. [23]

    Fries (R. W.),Modestino (J. W.). An empirical study of selected approaches to the detection of edges in noisy digitized images. TR 77-1.Rensselaer Polytechnic Institute. Troy. New York, USA, (1977).

  25. [24]

    Fu (K. S.),Rosenfeld (A.). Pattern Recognition and Image Processing.IEEE Trans. C, USA, (1976),25, n∘ 12, pp. 1336–1346.

  26. [25]

    Griffith (A. K.). Mathematical models for automatic line detection.Proc. of the 2ndInt. joint conference on artificial intelligence, London, England, (sept. 1971), pp. 17–26.

  27. [26]

    Griffith (A. K.). Edge detection in simple scenes usinga priori information.IEEE Trans. C, USA, (1973),22, n∘ 4, pp. 371–381.

  28. [27]

    Hall (E. L.),Kruger (R. P.),Dwyer (S. J.).et al. A survey of preprocessing and feature extraction techniques for radiographic images.IEEE Trans. C, USA, (1971),20, n∘ 9, pp. 1032–1044.

  29. [28]

    Haralick (R. M.),Shanmugam (K.),Dinstein (I.). Textural features for image classification.IEEE Trans., SMC., USA, (1973),3, n∘ 6, pp. 610–621.

  30. [29]

    Horowitz (S. L.),Pavlidis (T.). Picture segmentation by a tree traversal algorithm.J. Ass. for Comput. Machinery., USA, (1976),23, n∘ 2, pp. 368–388.

  31. [30]

    Hueckel (M. H.). An operator which locates edges in digital pictures.J. Ass. of Comput. Mach., USA, (1971),18, n∘ 1, pp. 113–125.

  32. [31]

    Hueckel (M. H.). A local visual operator which recognizes edges and lines.J. Ass. of Comput. Mach., USA, (1973),20, n∘ 4, pp. 634–647.

  33. [32]

    Hunt (B. R.). Bayesian methods in non-linear digital image restoration.IEEE Trans. C, USA, (1977),26, n∘ 3, pp. 219–229.

  34. [33]

    Hunt (B. R.),Cannon (T. M.). Non-stationary assumptions for gaussian models of images.IEEE Trans.S MC., USA, (1976),6, pp. 876–882.

  35. [34]

    Jahanshahi (M. H.). Statistical scene analysis: boundary estimation of objects in presence of noise.USCIPI Report 590. Univ. of Southern California, USA, (1975).

  36. [35]

    Kelly (M.). Edge detection by computer using planning. Machine Intelligence.Edinburgh Univ. Press., GB, (1971),6, pp. 397–409.

  37. [36]

    Keskes (N.). Etude des contours dans les images de télévision. Contribution au codage vidéo.Thèse de doctorat d’ingénieur. ENST, (déc. 1977), E 77006.

  38. [37]

    Keskes (N.), Kretz (F.), Maitre (H.). Statistical study of edges in T.V. pictures. A paraître dansIEEE Trans. on Communications., USA, (1979).

  39. [38]

    Kirsch (R.). Computer determination of the constituent structure of biological images.Computers & Biomedical Research., USA, (1971),4, n∘ 3, pp. 315–328.

  40. [39]

    Kretz (F.),Boudeville (J. L.). Dégradation des signaux d’images et qualité subjective en codage numérique: visibilité du flottement de contour.Ann. Télécomm. Fr., (sep.–oct. 1976),31, n∘ 9–10, pp. 333–356.

  41. [40]

    Lopez-Mora (S.). A joint detection estimation approach to boundary estimation.Univ. of Southern California, USA, (1977), USCIPI Report 760.

  42. [41]

    Mac Cormick (B. H.),Jayaramamurthy (S. N.). A decision theory method for the analysis of texture.Int. Jal of Computer and Information Sciences., USA, (1975),4, n∘ 1, pp. 1–38.

  43. [42]

    Maitre (H.). Propriétés statistiques fondamentales des signaux d’image.Colloque GRETSI, Nice, (1977).

  44. [43]

    Maitre (H.), Faust (B.). Détection des contours d’image dans un but de reconnaissance des formes.Congrès AFCETIRIA (TI-RF), Châtenay, (1978), pp. 456–465.

  45. [44]

    Martelli (A.). Edge detection using heuristic search methods.Computer Graphics & Image Processing, USA, (1972),1, pp. 169–182.

  46. [45]

    Mero (L.),Vamos (T.). Real-time edge-detection using local operators.Proc. of the 3rdInt. Joint. Conf. on Pattern Recognition. Coronado, California, USA, (1976), pp. 31–36.

  47. [46]

    Mero (L.),Vassy (Z.). A simplified and fast version of the Hueckel operator for finding optimal edges in pictures.Advanced Papers of the 4thInt. Joint. Conf. on Artificial Intelligence. Tbilisi. Georgia, USSR, (1975), pp. 650–655.

  48. [47]

    Mitchell (O. R.),Carlton (S. G.). Image segmentation using a local extrema texture measure.Pattern Recognition, GB, (1978),10, pp. 205–210.

  49. [48]

    Modestino (J. W.),Ashkar (G. P.),Kaufman (H.). Computationally efficient evaluation of dynamic left ventricular volume from serial angiocardiograms.Proc. of the San Diego Biomédical Symposium, USA, (1976),15, pp. 307–315.

  50. [49]

    Modestino (J. W.),Fries (R. W.). Edge detection in noisy images using recursive digital filtering.Computer Graphics & Image Processing. USA, (1977),6, pp. 409–433.

  51. [50]

    Modestino (J. W.),Fries (R. W.). Construction and properties of a useful two-dimensional random field.Technical Report. Rensselear Polytechnic Institute. Troy. New York, USA, (1978).

  52. [51]

    Montanari (U.). On the optimal detection of curves in noisy pictures.Communications of the Association for Computing Machinery, USA, (1971),14, n∘ 5, pp. 335–345.

  53. [52]

    Nahi (N. E.). Role of recursive estimation in statistical image enhancement.Proc. IEEE., USA, (1972),60, n∘ 7, pp. 872–877.

  54. [53]

    Nahi (N. E.),Habibi (A.). Decision-directed recursive image enhancement.IEEE Trans. CAS., USA, (1975),22, n∘ 3, pp. 286–293.

  55. [54]

    Nahi (N. E.),Jahanshani (M. H.). Image boundary estimation.IEEE Trans. C, USA, (1977),26, n∘ 8, pp. 772–781.

  56. [55]

    Nahi (N. E.),Lopez-Mora (S.). Estimation of objects boundaries in noisy images.Proc. IEEE Decision and Control Conference. Clearwater. Florida, USA, (déc. 1976), pp. 607–612.

  57. [56]

    Nevatia (R.). Locating object boundaries in textured environments.IEEE Trans. C, USA, (1976),25, n∘ 11, pp. 1170–1175.

  58. [57]

    Nevatia (R.). Evaluation of a simplified Hueckel edgeline detector.Computer Graphics & Image Processing, USA, (1977),6, n∘ 6, pp. 582–588.

  59. [58]

    Pavlidis (T.), Ali (F.). Contour description by general syntactic techniques.Proceedings of the Workshop on Picture Data Description and Management. Chicago. IEEE Publ. 11 CH 1187-4C. Long Beach. CA, USA, (1977).

  60. [59]

    Pratt (W. K.). Figure of merit for edge location.USCIPI report 660. Univ. of Southern California.Los Angeles. USA, (march 1976), pp. 85–93.

  61. [60]

    Pratt (W. K.). Digital Image Processing.Wiley. Intersciences, New York (1978).

  62. [61]

    Pratt (W. K.), Abdou (I. E.). Quantitative design and evaluation of enhancement/thresholding edge detectors.USCIPI Report 840. Univ. of Southern California.Los Angeles. USA, (sep. 1978), pp. 28–45.

  63. [62]

    Prewitt (J. M. S.). Object enhancement and extraction.Picture Processing & Psychopictorics.B. S. Lipkin &A. Rosenfeld, ed. Academic Press.New York, USA, (1970).

  64. [63]

    Ramer (U.). An iterative procedure for the polygonal approximation of plane curves.Computer Graphics & Image Processing. USA, (1972),1, pp. 244–256.

  65. [64]

    Read (J. S.),Jayaramamurthy (S. N.). Automatic generation of texture detectors.IEEE Trans. C., USA, (1972),21, n∘ 7, pp. 803–812.

  66. [65]

    Roberts (L. G.). Machine perception of 3-dimensional solids. In Optical & Electro-Optical Information Processing. J. T. Tipettet al., éd.M.I.T. Press. Cambridge. Massachussetts. USA, (1965), pp. 159–197.

  67. [66]

    Robinson (G. S.). Detection and coding of edges using directional masks.USPICI Report 660. Univ. of Southern California. Los Angeles. USA, (mars 1976), pp. 40–57.

  68. [67]

    Robinson (G. S.). Edge detection by compass gradient masks.Computer Graphic & Image Processing. USA, (1977),6, pp. 492–501.

  69. [68]

    Rosenfeld (A.). Connectivity in digital pictures.J. Ass. Comput. Mach. USA, (1970),17, n∘ 1, pp. 146–160.

  70. [69]

    Rosenfeld (A.). Picture Processing: 1977.Computer Graphics& Image Processing. USA, (1978),7, n∘ 2, pp. 211–242.

  71. [70]

    Rosenfeld (A.),Thurston (M.). Edge and curve detection for visual scene analysis.IEEE Trans. C. USA, (1971),20, n∘ 5, pp. 562–569.

  72. [71]

    Rosenfeld (A.),Thurston (M.),Lee (Y. H.). Edge and curve detection: further experiments.IEEE Trans. C. USA, (1972),21, n∘ 7, pp. 677–715.

  73. [72]

    Schachter (B. J.),Rosenfeld (A.),Davis (L. S.). Random mosaic models for textures.IEEE Trans. SMC, USA, (1978),8, n∘ 9, pp. 694–702.

  74. [73]

    Serra (J.). Lectures on image analysis by mathematical morphology.Publ. Ecole des Mines de Paris, (1976), n∘ N 475.

  75. [74]

    Shapiro (S. D.). Transformation for the computer detection of curves in noisy pictures.Computers Graphics & Image Processing. USA, (1975),4, n∘ 2, pp. 328–338.

  76. [75]

    Shapiro (S. D.). An extension of the transform method of curve detection for textured image data.Proc. Int. Joint Conf. on Pattern Recognition. Coronado. California. USA, (1976), pp. 205–207.

  77. [76]

    Shapiro (S. D.). Transform method of curve detection for textured image data.IEEE Trans. C. USA, (1978),27, n∘ 3, pp. 254–255.

  78. [77]

    Sobel (I.). Neighbourhood coding of binary images for fast contour following and general binary array processing.Computer Graphics & Image Processing. USA, (1978),8, pp. 127–135.

  79. [78]

    Sutton (R. N.),Hall (E. L.). Texture measures for automatic classification of pulmonary disease.IEEE Trans. C. USA, (1972),21, n∘ 7, pp. 667–676.

  80. [79]

    Wechsler (H.),Kidode (M.). A new edge detection technique and its implementation.IEEE Trans. SMC. USA, (1977),7, n∘ 12, pp. 827–836.

  81. [80]

    Weszka (J. S.),Rosenfeld (A.). An application of texture analysis to materials inspection.Pattern Recognition., GB, (1976),8, n∘ 4, pp. 195–200.

  82. [81]

    Weszka (J. S.),Rosenfeld (A.). Histogram modification for threshold selection.IEEE Trans. SMC, USA, (1979),9, n∘ 1, pp. 38–52.

  83. [82]

    Zucker (S. W.). Toward a model of texture.Computer Graphics & Image Processing. USA, (1976),5, pp. 190–202.

  84. [83]

    Zucker (S. W.),Hummel (R. A.),Rosenfeld (A.). An application of relaxation labelling to line and curve enhancement.IEEE Trans. C. USA, (1977),26, n∘ 4, pp. 394–403.

  85. [84]

    Zucker (S. W.),Rosenfeld (A.),Davis (L. S.). Picture segmentation by texture discrimination.IEEE Trans. C. USA, (1975),24, n∘ 12, pp. 1228–1232.

Download references

Author information

Correspondence to Michèle Basseville.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Basseville, M. Détection de contours: méthodes et études comparatives. Ann. Telecommun. 34, 559–579 (1979). https://doi.org/10.1007/BF03004242

Download citation