Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heterojunction bipolar transistors for millimeter waves applications: trends and achievements

Transistors Bipolaires Á HÉtÉrojonction Pour Applications MillimÉtriques: Tendances et rÉsultats


This paper first presents the present status of heterojunction bipolar transistors (HBT) under development obtained using either classical III-V based on GaAs or InP or SiGe compound semiconductors. Then a description of the developments to be achieved to allowing the use of HBT up to millimeter wave is carried out. The description is focused on material and process aspects. Afterwards the state of the art of HBT RF performances is made showing thatfmax up to 820 GHz have been already achieved by researchers from the University of California at Santa Barbara. This result is the highest f observed with any kind of transistors. The comparison of the different HBT technological solutions is presented followed by a short review of millimeter wave circuits already achieved.


Cet article présente les performances des transistors bipolaires à hétérojonction (TBH) en cours de développement. Les composants considérés sont obtenus à ľaide ďhétérojonctions formées soit de matériaux semiconducteur III-V classiques à base de GaAs ou ďlnP, soit de SiGe. Ensuite une description des développements à mettre en œuvre pour permettre leur fonctionnement aux ondes millimétriques est réalisée. Cette description est focalisée sur les aspects matériaux et technologiques. Puis ľétat de ľart des performances hyperfréquences des différentes families de composants TBH est dressé où il apparaît que des fmax de 820 GHz ont été obtenues par des chercheurs de ľUniversité de Californie à Santa Barbara, ce qui correspond à un record surclassant tous les autres transistors. La comparaison des différentes families technologiques de TBH est ainsi réalisée et suivie par les plus récents résultats en circuits hyperfréquences à base de TBH.

This is a preview of subscription content, log in to check access.


  1. [1]

    Schockley (W.), Circuits element utilizing semiconductor material, U.S. patent. 2569 347, (1951).

  2. [2]

    Kroemer (H.), Heterostructure bipolar transistors and integrated circuits,Proc. IEEE. (1982),70, n° 1, pp. 13–25.

  3. [3]

    Ferlet-Cavrois (V.), Marcandella (C.), Musseau (O.), Leray (J.L.), Pelloie (J.L.), Martin (F.), Kolev (S.), andPasquet (D.), High-frequency performances of a partially depleted 0.18 ¼m SOI/CMOS technology at low supply voltage Influence of parasitic elements,IEEE Elec. Dev. Lett. (1998),19, n° 7, pp. 265–267.

  4. [4]

    Kim (B. K.),Ko (B. K.),Lee (K.),Jeong (J. W.),Lee (K. S.), andKim (S.C.), Monolithic planar RF inductor and waveguide structures on silicon with performance comparable to those in GaAsMMK. Elect. Dev. Meeting., (1995), International.

  5. [5]

    Dhondt (F.), Barrette (J.), Haese (N.), Rolland (P.A.), Delage (S.L.), Finite-Element electromagnetic characterization of parasitics in multifinger thermally shunted HBT’S,IEEE Microwave Guided Wave Lett.(1998),8, n° 4, pp. 167–169.

  6. [6]

    Pullela (R.), Lee (Q.), Agarwal (B.), Mensa (D.), Guthrie (J.), Samoska (L.), Rodwell (M.), A > 400 GHz fmax transferredsubstrate HBT integrated circuit technology.,Device Research Conference. (1997), Fort Collins, Co, USA.

  7. [7]

    Harame (D.), Comfort (J. H.), Cressler (J. D.), Crabbé (E. F.), Sun (J.Y.-C.), Meyerson (B. S.), Tice (T.), Si/SiGe epitaxial-base transistors — Part I: Material, Physics, and circuits,IEEE Trans. Elec. Dev. (1995),42, n° 3, pp. 455–468.

  8. [8]

    Gao (G.B), MoRKog (H.), Material based comparison for power heterojunction bipolar transistor,IEEE Trans. Elec. Dev. (1991),38, n° 11, pp. 2410–2416.

  9. [9]

    Kobayashi (K.W.),Nishimoto (M.),Tran (L.T.),Wang (H.),Cowles (J.),Block (T.R.),Elliott (J.),Allen (B.),Oki (A.K.),Streit (D.C.), A 44 GHz InP-based HBT double-balanced amplifier with novel current Re-use biasing,IEEE Radio Freq. Integ. Circ. Symp. (1998), pp. 267-270.

  10. [10]

    Oka (T.), Ouchi (K.), Uchiyama (H.), Taniguch (T.), Mochizuki (K.), Nakamura (T.), High-speed InGaP/GaAs heterojunction bipolar transistors with buried SiO2 using Wsi as the base electrode,IEEE Elec. Dev. Lett. (1997),18, n° 4, pp. 154–156.

  11. [11]

    Ohhata (K.), Masuda (T.), Ohue (E.), Washio (K.), Design of a 32.7-GHz bandwidth AGC amplifier IC with wide dynamic range implemented in SiGe HBT,IEEE J. Solid-St. Circ. (1999),34, n° 9, pp. 1290–1297.

  12. [12]

    Nguyen (C.), Liu (T.), Chen (M.), Sun (H.C.), Rensch (D.), A1In As/GalnAs/InP double heteroj unction bipolar transistor with a novel base-collector design for power applications,IEEE Elec. Dev. Lett. (1996),17, n° 3, pp. 133–135.

  13. [13]

    Henkel (A.), Delage (S. L.), diFoRTE-PoissoN (M.—A.),Chartier (E.), Blanck (H.), Hartnagel (H. L.), Collector-up GalnP/GaAs double heterojunction bipolar transistor with high fmax,Electronics Letters. (1997),33, n° 7, pp. 634–635.

  14. [14]

    Thomson-csF/LCR internal results, courtesy ofCharter (E.).

  15. [15]

    Shimawaki (H.), Amamiya (Y.), Furuhata (N.), Honjo (K.), High-fmax AlGaAs/InGaAs and AlGaAs/GaAs HBT’S with p+/p regrown base contacts,IEEE Trans. Elec. Dev. (1995),42, n° 10, pp. 1735–1743.

  16. [16]

    Wang (Nx.), Sheng (N. H.), Chang (M. F.), Ho (W. J.), Sullivan (G. J.), Sovero (E. A.), Higgins (J. A.), Asbeck (P. M.), Ultrahigh power efficiency operation of common-emitter and common-base HBT’S at 10 GHz,IEEE Trans. Microwave Theory. and Techn. (1990),38, n° 10, pp. 1381–1390.

  17. [17]

    Luryi (S.), HOW to make an ideal HBT and sell it too,IEEE Trans. on Elec. Dev. (1994),41, n° 12, pp. 2241–2247.

  18. [18]

    Gruhle (A.), Kibbel (H.), Mähner (C.), Mroczek (W.), Collector-up SiGe heterojunction bipolar transistors,IEEE Trans. Elec. Dev. (1999),46, n° 7, pp. 1510–1513.

  19. [19]

    Matine (N.),Pelouard (J.-L.),Pardo (F.),Teissier (R.),Pessa (M.), Novel approach for InP-based ultrafast HBTS,8 th Conf. on Indium Phosphide and rel. Mat.iRPM ’96, pp. 137-140.

  20. [20]

    Matine (N.), Réalisation et caractérisation de transistors bipolaires à hétérojonction InPAnGaAs/Métal (structure MHBT). PhD thesis, Universite Paris XI, U.F.R. Scientifique ďOrsay, (1996).

  21. [21]

    Henkel (A.), Delage (S.L.), DiForte-Poisson (M.-A.), Blanck (H.), Hartnagel (H. L.), Boron implantation into GaAs/Ga0.5In0. 5P heterostructures,Jap. J. of Appl. Phys. (1997),36, n° lA, pp. 175–180.

  22. [22]

    Yamahata (S.), Matsuoka (Y.), Ishibashi (T.), High fmax collector-up AlGaAs/GaAs heterojunction bipolar transistors with a heavily carbon-doped base fabricated using oxygen-ion implantation,IEEE Elec. Dev. Lett. (1993),14, n° 4, pp. 173–175.

  23. [23]

    Bhattacharya (U.), Mensa (D.), Rodwell (M. J. W.), 170 GHz transferred-substrate heterojunction bipolar transistor,Electron. Lett. (1996),32, n° 15, pp. 1405–1406.

  24. [24]

    Bhattacharya (U.), Mondry (M.J.), Hurtz (G.), Tan (I.-H.), Pullela (R.), Reddy (M.), Guthrie (J.), Rodwell (M. J. W.), Bowers (J. E.), Transferred substrate Schottky-collector Heterojunction bipolar transistors: first results and scaling laws for high fmas,IEEE Elect. Dev. Lett. (1995),16, n° 8, pp. 357–359.

  25. [25]

    Wang (N.-L.), Ho (W.-J.), Higgins (J. A.), Millimeter wave AlGaAs-GaAs HBT power operation,IEEE Microwave guided wave Lett. (1992),2, n° 10, pp. 397–399.

  26. [26]

    Kasper (E.),Gruhle (A.), andkibbel (H.). High speed SiGeHBT with very low base sheet resistivity,IEDM 93. pp. 79-81.

  27. [27]

    Henkel (A.), Delage (S. L.), Diforte-Poisson (M.-A.), Chartier (E.), Blanck (H.), Hartnagel (H.L.), Collector-up GalnP/GaAs double heterojunction bipolar transistor with high fmax,Elec. Lett.,33, (1997), pp. 634–635.

  28. [28]

    Girardot (A.),Henkel (A.),Delage (S.L.),Diforte-Poisson (M.-A.),Chartier (E.),Floriot (D.),Cassette (S.), Transistor à hétérojonction GalnP/GaAs à hautes performances hyperfréquences en topologie collecteur en haut avec contact Schottky,II th Jounrées Nationales Microondes, (1999), pp. 1A4.

  29. [29]

    Suzuki (Y.),Shimawaki (H.),Amamiya (Y.),Nagano (N.),Niwa (T.),Yano (H.),Honjo (K.), 50-GHz bandwidth baseband amplifiers using GaAs-based HBTS,IEDM, (97), pp. 143-146.

  30. [30]

    Freundorfer (A.P.),Jamani (Y.),Falt (C.), A Ka-Band GalnP/GaAs HBT four-stage LNA,IEEE Microwave and Millimeter Wave Monolithic Circ. Symp. (1996), pp.141-144.

  31. [31]

    Nam (S.),Shala (N.),Ang (K.S.),Ashtiani (A.E.),Gokdemi (T.),Robertson (I.D.),Marsh (S.P.), Monolithic millimeter-wave balanced bi-phase amplitude modulator in GaAs/InGaP HBT technology,IEEE MTT-S Digest, (1999), pp.243-246.

  32. [32]

    Kobayashi (K. W.),Cowles (J.),Tran (L.),Block (T.),Oki (A. K.),Streit (D. C.), A 2-32 GHz coplanar waveguide InAlAs/InGaAs-InP HBT cascode distributed amplifier,IEEE Microwave and Millimeter Wave Monolithic Circ. Symp. (1995), pp. 195-197.

  33. [33]

    Kobayashi (K. W.), Oki (A. K.), Tran (L. T.), Cowles (J. C.), Gunerrez-Aitken (A.), Yamada (F.), Block (T. R.), Streit (D. C.),IEEE J. Sol. State Circ. (1999),34, n° 9, pp. 1225–1232.

  34. [34]

    Mensa (D.), Pullela (R.), Lee (Q.), Guthrie (J.), Martin (S. C.), Smith (R. P.), Jaganathan (S.), Mathew (T.), Agarwal (B.), Long (S. I.), Rodwell (M.), 48-GHz digital IC’s and 85-GHz baseband amplifiers using transferred-substrate HBT’S,IEEE J. of Sol. State Circ. (1999),34, n° 9, pp. 1196–1202.

Download references

Author information

Correspondence to Sylvain L. Delage.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delage, S.L. Heterojunction bipolar transistors for millimeter waves applications: trends and achievements. Ann. Télécommun. 56, 5–14 (2001).

Download citation

Key words

  • Bipolar transistor
  • Heterojunction transistor
  • Microwave transistor
  • Millimetric wave
  • III-V compound
  • Germanium silicon alloy
  • Properties of materials
  • Semiconductor technology
  • Semiconductor device
  • Electrical properties
  • Optimization

Mots clés

  • Transistor bipolaire
  • Transistor hétérojonction
  • Transistor hyperfréquences
  • Onde millimétrique
  • Composé III-V
  • Germanium silicium alliage
  • Propriété matériau
  • Technologie semiconducteur
  • Dispositif semiconducteur
  • Propriété électrique
  • Optimisation