Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the existence of a minorant for the indefiniteness of a position measurement

Sulľesistenza di una minorante per ľindefinizione della misura di una posizione

  • 18 Accesses

  • 1 Citations

Abstract

A new general proof is given of the existence of a Minorant for the indefinition of a Position Measurement. Again «Planck radius» appears to be such a minorant.

Riassunto

Vien data una nuova prova generale delľesistenza di una minorante per ľindefinizione della misura di una posizione. Di nuovo si trova che tale minorante è il raggio di Planck.

This is a preview of subscription content, log in to check access.

References

  1. Bohr N. undRosenfeld L., 1933.Zur Frage der Messbarkeit der Elektromagnetischen Feldgrossen. Det Kgl. Danske Videnskabernes Selskab. Math. fys., Med XII, 8.

  2. DeWitt B. S., 1962.The Quantization of Geometry, Gravitation. John Wiley, New York: 266.

  3. Einstein A., 1916.Die Grundlagen der allgemeine Kelativitätstheory. Ann. Phys. Lpz., 49: 769.

  4. Ferretti B., 1968.Old and new problems in elementary particles. Academic Press, New York: 108.

  5. Ferretti B., 1984.On the existence of a minorant of the indefiniteness for the measurement of a position. Lettere al Nuovo Cimento, 40: 169.

  6. Toller M., 1975.A general Scheme for microscopic Theories. Intern. J. of Theoret. Phys., 62: 349.

  7. Yuen H. P., 1983.Contractive states and the Standard Quantum Limit for monitoring free-mass position. Phys. Rev. Lett., 51: 719.

Download references

Author information

Correspondence to Bruno Ferretti.

Additional information

Presentata nella seduta del 21 aprile 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferretti, B. On the existence of a minorant for the indefiniteness of a position measurement. Rend. Fis. Acc. Lincei 1, 281–284 (1990). https://doi.org/10.1007/BF03001761

Download citation

Key words

  • Quantum mechanics
  • General theory of relativity
  • Gravitation