Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Potassium-fluor-richterite, a new amphibole from San Vito, Monte Somma, Campania, Italy

Potassium-fluor-nchterite, un nuovo anfibolo da San Vito, Monte Somma, Campania, Italia

  • 38 Accesses

  • 2 Citations


Potassium-fluor-richterite occurs as euhedral crystals, light-grey in colour, in a skarn ejectum from a pyroclastic deposit near S. Vito, Monte Somma, Naples. It is associated with diopside and calcite. The strongest X-ray diffraction lines are (d- spacing in Å): 3.166, 8.49, 3.288, 2.831, 1.918 and 1.633. The cell parameters (in Å, space groupC2/m) are:a = 9.978 (1);b = 17.991(2);c = 5.269 (1); ß(°) = 104.90 (2);V = 914.2 (3). Potassium-fluor-richterite is biaxial negative with (± 0.004) nX = 1.613; nY = 1.623; nZ = 1.630. The crystal-chemical formula is:

(K0.67Na0.34) (Ca1.09Na0.91) (Mg40.976Fe0.017Mn0.002) (Si7.94Al0.04Ti0.007) O22 (F1.35OH0.65).

The FTIR spectrum in the OH-stretching region is discussed.


La potassium-fluor-richterite si rinviene in proietti carbonatici metamorfosati e metasomatizzati contenuti in un deposito piroclastico affiorante vicino al Comune di S. Vito, Monte Somma, Napoli. È associata con diopside e calcite. I riflessi più intensi nello spettro misurato ai raggi X sono (distanze interplanari in Å): 3.166, 8.49, 3.288, 2.831, 1.918 e 1.633. I parametri di cella sono (in Å):a = 9.978 (1);b = 17.991 (2);c = 5.269 (1); ß(°)= 104.90 (2);V = 914.2 (3). La potassium-fluor-richterite è biassica negativa. Gli indici di rifrazione sono (± 0.004): nX = 1.613; nY = 1.623; nZ = 1.630. La formula cristallochimica è: (K0.67Na0.34) (Ca1.09Na0.91) (Mg40.976Fe0.017Mn0.002) (Si7.94Al0.04Ti0.007) O22 (F1.35OH0.65). Lo spettro FTIR nella regione di stiramento dell’OH viene discusso. mis|Nella seduta dell’8 febbraio 1992.

This is a preview of subscription content, log in to check access.


  1. Appleman D. E., Evans H.T., 1963.Job 9214: Indexing and least-square refinement of powder diffraction data. Natl. Technl. Inf. Serv. U.S. Dep. Commerce, Springfield, Virginia, Document PB-216 188.

  2. Barberi F., Leoni L., 1980.Metamorphic carbonate ejecta from Vesuvius plinian eruption: Evidence of the occurrence of a shallow magma chamber. Bull. Volcanol., 43: 107–120.

  3. Cameron M., Sueno S., Papyke J. J., Prewitt C.T., 1983.High temperature crystal chemistry of K and Na flùor- richterites. Am. Min., 68: 924–943.

  4. Della Ventura G., Maras A., Parodi G. C., 1983.Potassium-fluorrichterite from Monte Somma (Campania)Italy. Per. Mineral., 52: 617–630.

  5. Della Ventura G., Robert J.-L., 1990.Synthesis, XRD and FTIR studies of strontium rich tentes. Eur. Journ. Min., 2: 171–175.

  6. Della Ventura G., Robert J.-L., Beny J.-M., 1991.Tetrahedrally coordinated Ti4 +in synthetic Ti-rich potassic nchtente: evidence from XRD, FTIR and Raman studies. Am. Min., 76: 1134–1140.

  7. HuebnerJ. S., Papike J.J., 1970.Synthesis and crystal chemistry of sodium-potassium richterite, (Na,K)NaCaMg 5 Si 8 0 22 (OH F) 2 :a model for amphiboles. Am. Min., 55: 1973–1992.

  8. Leake B., 1978.Nomenclature of amphiboles. Min. Mag., 42: 533–563.

  9. Mandarino J.A., 1978.The Glandstone-Dale relationship. Part II: Trends among constants. Can. Min., 16: 169–174.

  10. Maresch W., Langer K, 1976.Synthesis, lattice constant and OH-valence vibrations of an orthorombic amphibole with excess OH in the system Li2O—MgO—SiO2—H2O. Contrib. Mineral. Petrol., 56: 27–34.

  11. Mottana A., Griffin W. L., 1986.Crystal chemistry of two coexisting K-richterites from St. Marcel (Val d’Aosta, Italy). Am. Min., 71: 1426–1433.

  12. Oberti R., Ungaretti L., Cannillo E., Hawthorne F. C., 1992.The behaviour of Ti in amphiboles: I. Fourarid six-coordinate Ti in richterite. Eur. Journ. Min., in press.

  13. Pieruccini R., 1950.La mica di un blocco pneurnatolitico del Monte Somma ed i minerali che I’accompagnano. Atti Soc. Tosc. Sc. Nat, 57: 145–173.

  14. Robert J.-L., Della Ventura G., Thauvin J.-L, 1989a.The infrared OH-stretching region of synthetic potassium nchterites in the system K2O—Na2O—CaO—MgO—SiO2—H2O—HF. Eur. J. Min., 1: 203–211.

  15. Robert J.-L., Bény J.-M., Bény C., Volfinger M., 1989b.Raman and infrared characterization of hydroxyllepidolites. Part I: Relationships between OH-stretching wavenumbers and composition. Can. Min., 27: 225–235.

  16. Rowbotham G., Farmer V.C., 1973.The effect of «A»site occupancy upon the hydroxyl stretching frequency in clinoamphiboles. Contrib. Mineral. Petrol., 38: 147–149.

  17. Savelli C., 1968.The problem of rock assimilation by Somma-Vesuvius magma. II. Composition of sedimentary rocks and carbonate ejecta from the Vesuvius area. Contrib. Mineral. Petrol., 18: 43–64.

  18. Washington H.S., 1906.The Roman comagmatic region. Carnegie Inst. Wash. Publ. No, 57: 199 pp.

Download references

Author information

Correspondence to Giancarlo Della Ventura or Gian Carlo Parodi or Adriana Maras or A. Mottana.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ventura, G.D., Parodi, G.C., Maras, A. et al. Potassium-fluor-richterite, a new amphibole from San Vito, Monte Somma, Campania, Italy. Rend. Fis. Acc. Lincei 3, 239–245 (1992).

Download citation

Key words

  • Potassium-fluor-richterite
  • Monte Somma
  • Amphibole
  • Physical properties
  • FTIR