Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evolution of the DNA methylase protein family in vertebrates

Evoluzione delta famiglia di proteine DNA metilasiche nei vertebrati

  • 18 Accesses

  • 1 Citations


Employing a chromatofocusing technique, it is possible to resolve the DNA methylase system into several protein components characterized by different isoelectric points: 7 components, in fishes; 5, in amphibia; 6, in reptilia; 5, in birds; and 4, in mammals. Thus, a reduction of the structural heterogeneity of this system took place as the vertebrate evolution was progressing. When calf thymus DNA was used as substrate, the specific DNA methylase activity in mammals was about 20 times lower than that measured in fishes, amphibia, reptilia and birds. In birds and mammals, the SDS-denaturing gel electrophoresis of the DNA methylase components always revealed a protein of 45 KD. In birds, in addition, another protein of 60 KD was observed. This protein was not present in fishes, amphibia and reptilia.


Mediante chromatofocusing è stato possibile scomporre il sistema DNA metilasico in varie componenti caratterizzate da punti isoelettrici diversi: 7 componenti, nei pesci; 5, negli anfibi; 6, nei rettili; 5, negli uccelli; 4, nei mammiferi. Col progredire dell’evoluzione dei vertebrati, si verifica quindi una graduale riduzione dell’eterogeneità strutturale di questo sistema. Impiegando come substrato del DNA da timo di vitello, l’attività DNA metilasica specifica nei mammiferi è circa 20 volte inferiore a quella misurata nei pesci, negli anfibi, nei rettili e negli uccelli. Negli uccelli e nei mammiferi, 1a gel elettroforesi di tutte 1e componenti DNA metilasiche in SDS dénaturante rivela sempre una proteina di 45 KD. Negli uccelii, oltre a questa, compare una proteina di 60 KD. Tale componente non è présente nei pesci, negli anfibi e nei rettili.

This is a preview of subscription content, log in to check access.


  1. Adams R. L. P., Hill J., McGarvay M., Rinaldi A., 1989.Mouse DNA methylase: Intracellular location and degradation. Cell. Biophys., 15: 113–126.

  2. Bestor T. H., Ingram V. M., 1983.Two DNA methyltransferases from murine erythro leukemia cells: Purification, sequence specificity and mode of interaction with DNA. Proc. Natl. Acad. Sci., USA, 80: 5559–5563.

  3. Bestor T. H., Laudano A., Mattaliano R., Ingram V., 1988.Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Biol., 203: 971–983.

  4. Bradford M. N., 1976.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

  5. Cascio O., Pétrone G., Fazzio A., Sarpietro M. G., Cambria A., Volpe P., 1991.Development of the DNA methylase system as a function of the vertebrate evolution. Macromol. Funct. Cell, 6: 163–178.

  6. Delfini C, Crema A. L., Alfani E., Gambino I., Eremenko T., Volpe P., 1987. Ifthe active form of the in vivo DNA methylase a monomeric or a multimeric structure? In:Forum on Eukaryotic DNA Methylation. Rome, Abstr., p. 39.

  7. Eremenko T., Delfini C, Crema A. L., Alfani E., Volpe P., 1988.Uncoupling of the DNA Polymerase and methylase systems leads to hypomethylation of repair patches. Macromol. Funct. Cell, 5: 37–41.

  8. Hubscher U., Pedrali-Noy G., Knust-Kron B., Doerfler W., 1985.DNA methyltransferases: Activity minigel analysis and determination with DNA covalently bound to a solid matrix. Anal. Biochem., 150: 442–448.

  9. Merril C. R., Goldman D., Sedman S., Elbert M. N., 1981.Ultrasensitive stain for proteins in Polyacrylamide gels shows regional variations in cerebrospinal fluid proteins. Science, 211: 1473–1476.

  10. Sano H., Noguchi H., Sager R., 1983.Characterization of DNA methyltransferase from bovine thymus cells. Eur. J. Biochem., 135: 181–185.

  11. Turnbull J. F., Adams R. L. P., 1976.Methylase purification from ascites cells and influence of various DNA Substrates on its activity. Nucl. Acids Res., 3: 677–696.

  12. Volpe P., Eremenko T., 1989.The role of the repair-modification system in evolution of the eukaryotic genome organization. In: A. Kotyk et al. (eds.),Highlights of Modern Biochemistry. VSP, Zeist, v. 2: 1645–1654.

  13. Volpe P., Cascio O., 1993.Detection of a mammalian DNA methylase protein family. Rend. Fis. Acc. Lincei, s. 9, v. 4: 345–357.

Download references

Author information

Correspondence to Pietro Volpe or Orazio Cascio.

Additional information

Nella seduta del 18 giugno 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volpe, P., Cascio, O. Evolution of the DNA methylase protein family in vertebrates. Rend. Fis. Acc. Lincei 5, 79–87 (1994). https://doi.org/10.1007/BF03001439

Download citation

Key words

  • DNA methylase system
  • Evolution
  • Vertebrates