Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An efficient method for the TE- and TM-fields from an array on a corrugated ground plane

Une méthode efficace de calcul des champs te et tm d’une antenne en réseau sur plan de masse cannelé

  • 16 Accesses

Abstract

The far-field for the scalar te- and TM-cases is computed in three dimensions for a system radiating into the upper half-space. An array of sources is situated on the boundary and in between a number of infinite and equidistant rectangular grooves. Since the primary objective is to study the exterior problem, the sources are assumed to be known. Fourier transformation is used to derive matrix equations for the set of two-dimensional problems that correspond to polar directions in the far-field. When comparing the results for the two polarizations, the influence of the grooves in the ground plane is found to be weaker for the TM-case. The effects of certain singularities in the Fourier integrals are investigated by means of asymptotic methods.

Résumé

Le champ lointain dans les cas scalaires te et tm est calculé en trois dimensions pour un système rayonnant vers le demi-espace supérieur. Une configuration de sources est située sur le bord et entre un nombre de cannelures infiniment longues et équidistantes. Comme l’objectif est d’étudier le problème extérieur, les sources sont considérées connues. Une transformation de Fourier est utilisée pour obtenir des équations matricielles pour l’ensemble des problèmes à deux dimensions qui correspond à des directions polaires du champ lointain. La comparaison de l’effet des cannelures pour les deux polarisations montre que l’influence est plus faible pour le cas tm. Les effets de certaines singularités dans les intégrales de Fourier sont analysés par des méthodes asymptotiques.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Sandström (S.-E.). On the effect of a modified ground plane for a simple source configuration.J. Acoust. Soc. Am. (1990),88, pp. 566–569.

  2. [2]

    Sandström (S.-E.). Radiation from a simple source situated on a modified ground plane.Wave Motion (1991),14, pp. 225–232.

  3. [3]

    Sandström (S.-E.). A comparison between two techniques for a source on a modified ground plane and an investigation of the case with a finite number of troughs.J. Acoust. Soc. Am. (1992),92, pp. 1754–1758.

  4. [4]

    Barkeshli (K.), Volakis (J. L.). Scattering from narrow rectangular filled grooves.IEEE Trans. AP (1991),39, pp. 804–810.

  5. [5]

    Barkeshli (K.), Volakis (J. L.). Electromagnetic scattering from an aperture formed by a rectangular cavity recessed in a ground plane.J. Electromagn. Waves Appl. (1991),5, pp. 715–734.

  6. [6]

    Sandström (S.-E.), Tayeb (G.), Petit (R.). Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution.J. Electromagn. Waves Appl. (1993),7, pp. 631–649.

  7. [7]

    Shamansky (H.), Dominer (A.), Wang (N.). A physical basis formulation for the electromagnetic backscattering by a finite- length rectangular trough in a ground plane.IEEE Trans. AP (1993),41, pp. 397–402.

  8. [8]

    Facq (P.). Diffraction par des structures cylindriques périodiques limitées.Ann. Télécommun. (1976),31, pp. 99–107.

  9. [9]

    Sandström (S.-E.). Scalar diffraction by rectangular apertures in a thick screen.J. Mod. Optic, to appear.

  10. [10]

    Josefsson (L. G.). Analysis of longitudinal slots in rectangular waveguides.IEEE Trans. AP (1987),35, pp. 1351–1357.

  11. [11]

    Golub (G. H.), Loan (C. F. van. Matrix computations.Johns Hopkins, Baltimore (1989).

  12. [12]

    Morse (P. M.), Feshbach (H.) Methods of theoretical physics. Particularly Chapter 7, Section 2.McGraw-Hill, New York (1953).

  13. [13]

    Kress (R.). Linear integral equations.Applied Mathematical Sciences 82, Springer, Berlin (1989).

  14. [14]

    Olver (F. W. J.). Asymptotics and special functions.Academic, New York (1974).

  15. [15]

    Jackson (J. D.). Classical electrodynamics.Wiley, New York (1975).

  16. [16]

    Leong (M. S.), Kooi Chandra (P.S.). Radiation from a flanged parallel-plate waveguide: solution by moment method with inclusion of edge condition.Proc. IEE (1988),H135, pp. 249–255.

  17. [17]

    Gradshteyn (I. S.), Ryzhik (I. M.). Table of integrals, series and products.Academic, New York (1980).

  18. [18]

    Abramowitz (M.), Stegun (I. A.). Handbook of mathematical functions.Dover, New York (1972).

  19. [19]

    Bleistein (N.). Mathematical methods for wave phenomena.Academic, San Diego (1984).

  20. [20]

    Sarkar (T. K.), Yang (X.), Arvas (E.). A limited survey of various conjugate gradient methods for solving complex matrix equations arising in electromagnetic wave interactions.Wave Motion (1988),10, pp. 527–546.

  21. [21]

    Dongarra (J. J.). Performance of various computers using standard linear equations software.Technical Memorandum CS -89-85, Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301 (1993).

  22. [22]

    Kuo (C.-C. J.), Levy (B. C.). Discretization and solution of elliptic pdes. A digital signal processing approach.Proc. IEEE (1990),78, pp. 1808–1842.

  23. [23]

    Yaghjian (A. D.). Augmented electric- and magnetic-field integral equations.Radio Science (1981),16, pp. 987–1001.

  24. [24]

    Jan (C.-G.), Hsu (P.), Wu (R.-B.). Moment method analysis of sidewall inclined slots in rectangular waveguides.IEEE Trans. AP (1991),39, pp. 68–73.

  25. [25]

    Forooraghi (K.), Kildal (P.-S.). Reduction of second-order beams in slotted waveguide arrays using baffles.ICAP 91, York (April 1991).

  26. [26]

    Kok (Y.-L.). Boundary-value solution to.ejectromagnetic scattering by a rectangular groove in a ground plane.J. Opt. Soc. Am. (1992),A9, pp. 302–311.

  27. [27]

    Ramo (S.), Whinnery (J.R.), Duzer T. Van. Fields and waves in communication electronics.Wiley, New York (1965).

  28. [28]

    Stutzman (W. L.), Thiele (G. A.). Antenna theory and design.Wiley, New York (1981).

Download references

Author information

Correspondence to Sven-Erik Sandström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sandström, S. An efficient method for the TE- and TM-fields from an array on a corrugated ground plane. Ann. Télécommun. 50, 416–424 (1995). https://doi.org/10.1007/BF02999742

Download citation

Key words

  • Antenna array
  • Electromagnetic field
  • te mode
  • tm mode
  • Fourier transformation
  • Groove
  • Periodic structure

Mots clés

  • Antenne réseau
  • Champ électromagnétique
  • Mode te
  • Mode tm
  • Transformation Fourier
  • Rainure
  • Structure périodique