Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A plane-polar near-field to far-field transformation with the fast Hankel transform method

Une méthode de transformation de champs proches plans-polaires en champs lointains à l’aide de la transformation rapide de Hankel

  • 72 Accesses

Abstract

It is known that a direct radial integration, used to compute the far-field from uniformly spaced plane-polar near-field measurements requires the evaluation of a large amount of Bessel functions and hence CPU time. Up to 1985 only unequally spaced fast Hankel algorithms were available. Hansen [3] developed an algorithm that was usable for equally spaced measurements points, but only for order zero. His theory is generalised in this paper and applied to a plane-polar near-field to far-field transformation.

Résumé

Il a été établi que les transformations de champs proches plans-polaires requièrent l’évaluation de maintes fonctions de Bessel et donc un temps de calcul considérable. Jusqu’en 1985 les algorithmes rapides de Hankel se limitaient à des points espacés de manière inégale. Hansen [3] a développé un algorithme qui se prêtait à des points de mesures uniformément espacés. mais pour l’ordre zéro seulement. Sa théorie est généralisée dans cet article et appliquée à une transformation de champs plans-polaires proches en champs lointains.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Cao (C), Near-field to far-field transformation methods for plane-polar antenna measurements,Doctoral Thesis, K.U. Leuven (1990), U.D.C. 621.396.67, pp. 101–130.

  2. [2]

    Brown (K.M.), Derivative free analogues of the Levenberg- Marquardt and Gauss algorithms for nonlinear least-squares approximation.Numer. Math. (1972),18, no 4, pp. 289–297.

  3. [3]

    Hansen (E.W.), Fast Hankel transform algorithm,IEEE Transiton ASSP (Jun. 1985),33, no 3, pp. 666–671.

  4. [4]

    Hansen (E.), Jablokow (A.), State variable representation of a class of linear shift-variant system,IEEE Trans, on ASSP (dec. 1982),30, no 6, pp. 874–880.

  5. [5]

    Sawchuk (A.A.), Space-variant image restoration by coordinate transformations,J. Opt. Soc. Amer. (1974),27, pp. 138–144.

  6. [6]

    Braceweix (R.N.), The Fourier transformation and its applications.Me Graw-Hill (1978),58 pp. 248–266.

  7. [7]

    Kang Fen, Numerical calculation methods,National Defence Industry Publishing House. Shanghai (1978), pp. 146–172.

  8. [8]

    Miller (E.K.), Theoretical methods for determining the interaction of electromagnetic wave with structures, [edited by J.K. Skwirzynski], Sythoff & Noordhoff (1981), pp. 173–180.

  9. [9]

    Rahmat-samii (Y.), Gatti (M.S.), Far-field patterns of spaceborne antennas from plane-polar near-field measurement,IEEE Trans, on AP (jun. 1985),33, no 6, pp. 638–648.

Download references

Author information

Correspondence to Chen CAO or Emmanuel Van Lil or Antoine Van De Capelle or Kees Van ’t Klooster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

CAO, C., Van Lil, E., Van De Capelle, A. et al. A plane-polar near-field to far-field transformation with the fast Hankel transform method. Ann. Télécommun. 46, 273–281 (1991). https://doi.org/10.1007/BF02999398

Download citation

Mots clés

  • Electromagnetic field
  • Near field
  • Far field
  • Polar coordinate
  • Hankel transformation
  • Fast algorithm
  • Numerical analysis

Key words

  • Champ électromagnétique
  • Champ proche
  • Champlointain
  • Coordonnée polaire
  • Transformation Hankel
  • Algorithme rapide
  • Analyse numérique