Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shape representation and coding of visual objets in multimedia applications — An overview

Revue des MÉthodes de ReprÉsentation et de Codage de Formes D’objets Visuels dans les Applications MultimÉdia

  • 69 Accesses


Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustness.


Les besoins en matière de fonctionalité orientées objet dans les communications audioviduelles sont apparus récemment avec l’émergence d’application nouvelles telles que la video conférence, les vidéophones et la vidéo interactive. Alors que les normes de compression existantes traitent la scène audio-visuelle au niveau de la trame, il est maintenant nécessaire de traiter séparément les différents objet présents, permettant ainsi une transmission échelonnable aussi bien que la recomposition de la scène par le receveur. La future norme MPEG-4 a pour but de proposer des outils de compression offrant ces nouvelles fonctionalités. Contrairement aux standards orientés trame existants, les schémas de codage correspondants doivent intégrer l’information de forme. Cet article présente un certain nombre de solutions existantes au problème de la représentation et du codage des formes. Différentes techniques de codage deformes et de contours sont présentées et leurs performances sont analysées en considérant l’efficacité du codage et la capacité de régulation débit/distortion, ainsi que la flexibilité vis-à-vis des besoins de l’application, tels que la transmission progressive, le codage à court délai, et la résistance aux erreurs.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ansari (N.), Delp. (E. J.), On detecting dominant points.Pattern Recognition, 24:441–450, (1991).

  2. [2]

    Ayer (S.), Sequential and competive methods for estimation of multiple motions.PhD thesis, EPFL, Lausanne, Switzerland, (1995).

  3. [3]

    Ballard (D.), Brown (C.), Computer vision.Prentice Hall, 1982.

  4. [4]

    Bossen (F.). Ebrahimi (T.), Region shape coding.Technical Report M0318, ISO/IECJTCl /SC29 /WG11, (Nov. 1995).

  5. [5]

    Bossen (F.), Ebrahimi (T.). A simple efficient binary shape coding technique based on bitmap representation.Int. Conf. on Acoustics, speech and signal processing, (1997).

  6. [6]

    Brady (N.), Bossen (F.), Murphy (N.) Context-based arithmetic encoding of 2D shapes sequences.Int. Conf. on Image Processing, (1997).

  7. [7]

    Brady (N.), Ducla-Soares (L.). Error resilience of arbitrarily shape vos (ce el4).Technical Report M2370, ISO / IEC JTC1 / SC29 /WG11, (July 1997).

  8. [8]

    Brigger (P.). Morphological shape representation using the skeleton decomposition : application to image coding.PhD thesis, EPFL, Lausanne, Switzerland, (1995).

  9. [9]

    Brigger (P.), Kunt (M.). Morphological contour coding using distance functions optimized by genetic algorithms.Int. Conf. on Image Processing, volume I, pp. 534–537, (Nov. 1995).

  10. [10]

    LE Buhan (C), Reusens (E.), Ebrahimi (T.). Object-scalable dynamic coding of visual information.Proc. EUSIPCO. (Sept 1996).

  11. [11]

    Cleary (J.), Witten (I.). Data compression using adaptive coding and partial string matching.IEEE Trans. COM-32(4), (Apr. 1984).

  12. [12]

    Berlin (HHI) COST211ter. Segmentation based coding scheme for object scalable and quality scalable coding of video.Technical Report M0415, ISO/IEC JTC1 /WG11, (Nov. 1995).

  13. [13]

    Duda (R. D.), Hart (P. E.). Pattern classification and scene analysis.Wiley, New York, (1973).

  14. [14]

    Dunham (J.). Optimum uniform piecewise linear approximation of planar curves.IEEE Trans. PAM1,8(l):67–75, (Jan. 1986).

  15. [15]

    Eden (M.), Kocher (M.). On the performance of a contour coding algorithm in the context of image coding Part I: contour segment coding.Signal Processing,8:381–386, (1985).

  16. [16]

    Etoh (M.), Boon (C.S.), andKadono (S.). Template-based video coding with opacity representation.IEEETrans. CSVT.,7(l):172–180, (Feb. 1997).

  17. [17]

    Foley (J. D.), Dam (A.van), Feiner (S. K.), Hughes (J. F). Computer graphics : principles and practice.Adision-Wesley, 2nd edition, (1990).

  18. [18]

    Freeman (H.). On the encoding of arbitrary geometric configurations.IRE Trans. EC-10: 260–268, (June 1961).

  19. [19]

    Freeman (H.) Computer processing of line drawing images.Computing Surveys,6: 57–97, (March 1974).

  20. [20]

    Gerken (P.). Object-based analysis-synthesis coding of image sequences at very low bit rates.IEEE Trans. CSVT,4(3):-235, (1994).

  21. [21]

    Gu (C.). Multivalued morphology and segmentation-based coding.PhD thesis, EPFL, Lausanne, Switzerland, (1996).

  22. [22]

    Gu (C.), Kunt (M.). Contour simplification by a new nonlinear filter region-based coding.IEEE International Conference on Image Processing, Los Alamitos, volume 3, pp. 751–755, (1994).

  23. [23]

    *** Ad hoc group on MPEG-4 video VM editing. MPEG-4 video verification model version 2.0.Technical Report JTCl / SC29/WG11 /N1260, ISO/IEC, (March 1996).

  24. [24]

    *** Ad hoc group on shape coding. Description of core experiments on shape coding.Technical Report JTCl / SC29 / WG11 / M0889, ISO / IEC, (May 1996).

  25. [25]

    *** Recommendation T. 6.Facsimile coding schemes and coding control functions for Group 4 facsimile apparatus ITU-T.

  26. [26]

    *** Recommendation T. 82.Information technology - coded representation of picture and audio information - progressive bilevel image compression ITU-T.

  27. [27]

    Kaneko (T.), Okudaira (M). Encoding of arbitrary curves based on chain code representation.lEEETrans. COM.,33(7): 697–707, (July 1985).

  28. [28]

    Kunt (M.), Ikonomopoulos (A.), Kocher (M.). Second generation image coding techniquesProc. IEEE,73, (4): 549–575, (1985.)

  29. [29]

    Langdon (G.), Rissanen (J.). Compression of black-white images with arithmetic coding.IEEE Trans. COM,29(6): 858–867, (June 1981).

  30. [30]

    Li (H.), Gerken (P.). Comparison of different error criteria for shape coding.Technical Report M0697, ISO / IEC JTCl / SC29/ WG11, (March 1996).

  31. [31]

    Loncaric (S.), Dhawan (A.). Near-optimal MST-based shape description using genetic algorithm.Pattern Recognition,28(4):571–579,(Apr. 1995).

  32. [32]

    Lu (C.) andDunham (J.). Highly efficient coding schemes for contour lines based on chain code representations.IEEE Trans. COM,39(10): 1511–1514, (Oct. 1991).

  33. [33]

    Maragos (P. A.), Schafer (R. W.). Morphological skeleton and coding of binary images.IEEE Trans ASSP34(5): 1228–1244, (Oct. 1986);

  34. [34]

    Mehrotra (R.), Gary (J. E.). Similar shape retrieval in shape data management.Computer,28(9): 57–62, (1995).

  35. [35]

    Moccagatta (I.), Schutz (M.), Moscheni (F.), Dufaux (F.). Vector quantization (VQ)-based motion field refinement technique for image sequence coding.Proc. SPIE - The International Society for Optical Engineering, volume 2451, pp. 156–167. Society of Photo-Optical Instrumentation Engineers. Bellingham (1995).

  36. [36]

    *** MPEG. Video verification model version 7.0.Technical Report Available from http : // drogo.cselt.stet.it / mpeg, ISO / IECJTC1/SC29/WG11, (1997).

  37. [37]

    Ramer (U.). An iterative procedure for polygonal approximation of plane curves.Computer Graphics and Image Processing,1: 244–256, (1972).

  38. [38]

    Ray (B.), Ray (K.). A new split-and-merge for polygonal approximation of chain coded curves.Pattern Recognition Letters,16: 161–169, (Feb. 1995).

  39. [39]

    Ray (B.), Ray (K.). An optimal algorithm for polygonal approximation of digitized curves using 1. 1 norm.Pattern Recognition,26: 505–509, (Feb. 1995).

  40. [40]

    Rissanen (J.). Generalized Kraft inequality and arithmetic coding.IBM Journal Res. and Dev.,20: 198–203, (May 1976).

  41. [41]

    Rosenfeld (A.), Kak (A. C). Digital picture processing, volume 2.Academic Press, New York, USA, 2nd edition, (1982).

  42. [42]

    Salembier (P.), Marqués (F.), Gasull (A.). Coding of partition sequences.In L. Torres and M. Kunt, editors,Video coding. Kluwer Academic, (1996).

  43. [43]

    Shapiro (L.), MacDonald (R.), Sternberg (S.). Ordered structural shape matching with primitive extraction by mathematical morphology.Pattern Recognition,20: 75–90, (1987).

  44. [44]

    Stuhlmuller(K. W.), Salai (A.), Girod (B.). Rate constrained contour representation for region-based motion compensation.Proc. Symp. on Visual Comm. and image Proc, SPIE, volume 2727, (March 1996).

  45. [45]

    Written (I.), NeaI (R.), Cleary (J.). Arithmetic coding for data compression.Communications ACM,30 (6): 520–540, (June 1997).

  46. [46]

    Yamaguchi (N.), Ida (T.), Watanabe (T.). A binary shape coding method using modified MMR.Int. Conf. on Image Processing, (Oct 1997).

Download references

Author information

Correspondence to Corinne Le Buhan Jordan or Sushil Bhattacharjee or Frank Bossen or Frédéric Jordan or Touradj Ebrahimi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jordan, C.L.B., Bhattacharjee, S., Bossen, F. et al. Shape representation and coding of visual objets in multimedia applications — An overview. Ann. Télécommun. 53, 164–178 (1998). https://doi.org/10.1007/BF02997675

Download citation

Key words

  • Rewiew
  • Multimedia sercice
  • Image coding
  • Geometrical shape
  • Edge detection
  • Information compression
  • Object oriented method
  • Standardization
  • Intraframe coding
  • Interframe coding

Mots clés

  • Article de synthèse
  • Service multimedia
  • Codage image
  • Forme géométrique
  • Détection bord
  • Compression information
  • Méthode orientée objet
  • Normalisation
  • Codage intratrame
  • Codage intertrame