Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An ALE finite element method for baffled fuel container in Yawing motion

Abstract

A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE (arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

References

  1. Abramson, H. N., 1966,The Dynamic Behavior of Liquids in Moving Containers, NASA SP–106.

  2. Bathe, K. J., 1996,Finite Element Procedures, Prentice-Hall, Singapore.

  3. Bauer, H. F., 1966, “Nonlinear Mechanical Model for the Description of Propellant Sloshing.”AIAA Journal, Vol.4, No. 9, pp. 1662–1668.

  4. Belytschko, T. and Kennedy. J. M., 1978. “Computer Models for Subassembly Simulation,”Nucl. Engrg. Des., Vol.49, pp. 17–38.

  5. Benson, D. J., 1989, “An Efficient, Accurate, Simple ALE Method for Nonlinear Finite Element Programs,”Comput. Methods Appl. Mech. Engrg. Vol. 72, pp. 305–350.

  6. Cho, J. R. and Song, J. M.. 2001. “Assessment of Classical Numerical Models for the Separate Liquid-Structure Modal Analysis,”J. Sound and Vibration, Vol. 239. No. 5, pp. 995–1012.

  7. Chorin, A. J.. 1968, “Numerical Solution of the Navier-Stokes Equations.”Mathematics of Computation. Vol. 22, pp. 745–762.

  8. Donea, J., Giuliani. S. and Halleux, J. P., 1982, “An arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions.”Comput. Methods Appl. Mech. Engrg., Vol.33, pp. 689–723.

  9. Hayashi, M., Hatanaka, K. and Kawahara, M., 1991, “Lagrangian Finite Element Method for Free Surface Navier-Stokes Flow Using Fractional Step Methods,”Int. J. for Numerical Methods in Fluids, Vol.13, pp. 805–840.

  10. Hirt, C. W., Amsden, A. A. and Cook, J. L., 1974, “An Arbitrary Lagrangian-Eulerian Computing Method for all flow Speeds.”J. Computational Physics, Vol.14, pp. 227–253.

  11. Hughes, T. J. R., Liu, W. K. and Zimmerman, T. K., 1981, “Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows,”Comput. Methods Appl. Mech. Engrg., Vol. 58, pp. 227–245.

  12. Kennedy, J. M. and Belytschko, T. B., 1981, “Theory and Application of a Finite Element Method for Arbitrary Lagrangian-Eulerian Fluids and Structures,”Nucl. Engrg. Des., Vol. 68, pp. 129–146.

  13. Miyata, T., Yamada, H. and Saito, Y., 1988, “Suppression of Tower-Like Structure Vibration by Damping Effect of Sloshing Water Contained,”Trans. Japan Society of Civil Engineering. Vol. 34A, pp. 617–626.

  14. Newmark, N. M., 1959, “A Method of Computation for Structural Dynamics,”ASCE Journal of Engineering Mechanics Devision, Vol. 85, pp. 67–94.

  15. Paidoussis, M. P., 1998,Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 1, Academic Press, New York.

  16. Welt, F. and Modi, V. J., 1992, “Vibration Damping Through Liquid Sloshing, Part 2: Experimental Results,”J. Vibration and Acoustics, Vol. 114, pp. 17–23.

Download references

Author information

Correspondence to Jin-Rae Cho or Hong-Woo Lee or Wan-Suk Yoo or Min-Jeong Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, J., Lee, H., Yoo, W. et al. An ALE finite element method for baffled fuel container in Yawing motion. KSME International Journal 18, 460–470 (2004). https://doi.org/10.1007/BF02996111

Download citation

Key Words

  • ALE Finite Element Method
  • Coupled Iterative Time Integration
  • Remeshing and Smoothing
  • Newmark and Fractional Methods
  • Baffled Fuel Container