Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth-ionosphere waveguide

SchÉma aux diffÉrences finies pour Le calcul de la propagation VLF-LF dans le guide d’onde anisotrope terre-ionosphÉre

  • 268 Accesses

Abstract

Due to the presence of the natural magnetic field, the ionosphere surrounding the earth is a gyrotropic medium. This paper presents a finite-difference time-domain scheme that can deal with such an anisotropic medium, allowing the propagation of VLF-LF radiowaves to be computed in the waveguiding structure composed of the earth surface and the ionosphere. The numerical scheme is described in detail, with a special emphasis on the problem of the numerical stability.

Résumé

De part la présence du champ magnétique naturel, l’ionosphère terrestre est un milieu anisotrope de type gyrotropique. Cet article présente un schéma numérique aux différences finies adapté à ce milieu, développé pour calculer la propagation des ondes VLF-LF dans le guide d’onde constitué de la terre et de l’ionosphère. Le schéma est décrit en détail, avec une attention particuliére portée à la question de la stabilité numérique.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Kelly (F. J.). elf/vlf/lf propagation and system design, Report 9028, Naval Research Laboratory, Washington DC, (June 1987).

  2. [2]

    Morfitt (D. F.), Halley (R. F.). Comparison of waveguide and wave hop techniques for vlf propagation modeling, nwc Techniques Publication 4952, Naval Weapons Center, China Lake, CA, (1970).

  3. [3]

    BÉRENGER (J.-F). FDTD computation of VLF-LF propagation in the Earth-ionosphere waveguide - euroem94 Symposium, Bordeaux, (June 1994).

  4. [4]

    Taflove (A.). Computational electrodynamics. The finite-difference time-domain method Artech House, (1995).

  5. [5]

    Holland (R.). threds: A finite-difference time-domain emp code in 3d spherical coordinatesIEEE Trans. Nuc. Sc,30, pp. 4592–95, (Dec. 1983).

  6. [6]

    Beggs (J.H.), LUEBBERS (R.J.), Yee (K.S.), Kuntz (K.S.). Finite- difference time-domain implementation of surface impedance boundary conditions,IEEE Trans. Ant. Prop.,40, no 1, pp. 49- 56, (Jan. 1992).

  7. [7]

    Maloney (J.G.), Smith (G.S.). The use of surface impedance concepts in the finite-difference time-domain method,IEEE Trans. Ant. Prop.,40 no 1, pp. 38–48, (Jan. 1992).

  8. [8]

    Holland (R.), Williams (J.R.). Total-field versus scattered-field finite-difference: a comparative assesment,IEEE Trans.Nuc. Sc,30, pp. 4583–4588, (Dec. 1983).

  9. [9]

    Schneider (J.), Hudson (S.). Finite-difference time-domain solution of Maxwell’s equations for the dispersive ionosphereIEEE Trans. Ant. Prop.,41, no 7, pp. 994–999, (July 1993).

  10. [10]

    Nickisch (L.J.), Franke (P.M.). The finite-difference time- domain method applied to anisotropic materialIEEE Ant.Prop. Magazine,34, no 5, pp. 33–39, (Oct. 1992).

  11. [11]

    Reineix (A.), Monedière (T.), Jecko (F.). Ferrite analysis using the finite-difference time-domain (fdtd) method,Micr. Optic. Techn. Letters,5, no 13, pp. 685–686, (Dec. 1992).

  12. [12]

    Knapp (W.S.), Schwartz (K.). Aids for the study of electromagnetic black-out DNA Report 3499H, General Electric Company, (Fev. 1975).

  13. [13]

    Bérenger (J.-P). Reduction of the angular dispersion of the fdtd method in the earth-ionosphere waveguide, submitted.

Download references

Author information

Correspondence to Marc ThÈvenot or Jean-Pierre BÉrenger or Thierry MonediÈre or Françoise Jecko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

ThÈvenot, M., BÉrenger, J., MonediÈre, T. et al. A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth-ionosphere waveguide. Ann. Télécommun. 54, 297–310 (1999). https://doi.org/10.1007/BF02995540

Download citation

Key words

  • Electromagnetic wave propagation
  • Ionospheric duct
  • Anisotropic medium
  • LF
  • VH Time domain method
  • Finite difference method
  • Numerical method
  • Stability criterion

Mots clés

  • Propagation onde électromagnétique
  • Guide onde sphère électromagnétique
  • Milieu anisotrope
  • Onde kilométrique
  • onde myriamétrique
  • Méthode domaine temps
  • Méthode différence finie
  • Méthode numérique
  • Critère stabilisé