Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On isometries of finite Euclidean Planes

  • 16 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

Bibliography

  1. [1]

    F. S. Beckman andD. A. Quarles, Jr., On Isometries of Euclidean Spaces. Proc. Am. Math. Soc.4 (1953) 810–815.

  2. [2]

    W. Benz, Über die Grundlagen der Geometrie der Kreise in der Pseudoeuklidischen, (Minkowskischen), Geometrie. Journal für die reine und angewandte Mathematik232 (1968) 41–76.

  3. [3]

    W. Benz, Vorlesungen über Geometrie der Algebren. Band 197. Springer-Verlag, Berlin-Heidelberg-New York (1973).

  4. [4]

    W. Benz, Über die Funktionalgleichung der Längentreue im Ringbereich. Aequationes Math.10 (1974) 262–277.

  5. [5]

    B. Farrahi, On Isometries of Euclidean Planes. Journal of Geometry, to appear.

  6. [6]

    B. Farrahi, On Isometries of Planes, with the Euclidean-Like Metric, over Galois Fields. Abh. Math. Sem. Univ. Hamburg (1975), to appear.

  7. [7]

    B. Farrahi, On Distance Preserving Transformations of Euclidean-Like Planes over the Rational Field. Aequationes Math., to appear.

  8. [8]

    G. Järnefelt, Reflections on a Finite Approximation to Euclidean Geometry. Physical and Astronomical Prospects. Ann. Acad. Sci. Fenn.,96 (1951).

  9. [9]

    G. Järnefelt andP. Kustaanheimo, An Observation on Finite Geometries. 11 Skand. Math. Kongress Trondheim (1949) 166–182.

  10. [10]

    G. Järnefelt andB. Qvist, Die Isomorphie eines elementargeometrischen und eines Galois-Gitterpunktmodells. Ann. Acad. Sci. Fenn.,201 (1955).

  11. [11]

    I. Kaplansky, Fields and Rings. The University of Chicago Press, Chicago-London (1970).

  12. [12]

    P. Kustaanheimo, A Note on a Finite Approximation of the Euclidean Plane Geometry. Soc. Sci. Fenn. Comm.15 No. 19 (1950) 11 pp.

  13. [13]

    P. Kustaanheimo, On the Fundamental Prime of a Finite World. Ann. Acad. Sci. Fenn.129 (1952).

  14. [14]

    P. Kustaanheimo, On the Relation of Congruence in Finite Geometries. Rendic. Mat.16 (1957a) 286–291.

  15. [15]

    P. Kustaanheimo, On the Relation of Order in Finite Geometries. Rend. Mat.16 (1957b) 292–296.

  16. [16]

    P. Kustaanheimo andB. Qvist, Finite Geometries and their Application. Nordisk Mat. Tidskr.2 (1954) 137–155.

  17. [17]

    P. Kustaanheimo, On the Relation of Order in Geometries over Galois Fields. Soc. Sci. Fenn. Comm. Phys.-Math.20 No. 8 (1957) 9 pp.

  18. [18]

    P. S. Modenov andA. S. Parkhomenko, Geometric Transformations, volume 1, Academic Press, New York-London (1965).

  19. [19]

    B. Qvist, Some Remarks Concerning Curves of the Secord Degree in a Finite Plane. Ann. Acad. Sci. Fenn.134 (1952) 1–27.

  20. [20]

    J. P. Serre, A Course in Arithmetic. Springer-Verlag, New York-Heidelberg-Berlin (1973).

  21. [21]

    E. Sperner, Die Ordnungsfunktionen einer Geometrie. Math. Ann.121 (1949) 107–130.

  22. [22]

    E. Sperner, Beziehungen zwischen geometrischer und algebraischer Anordnung. S.-B. Heidelberger Akad. Wiss. Math. Nat. Kl.10 (1949).

Download references

Additional information

Dedicated to ProfessorE. Sperner on the occasion of his 70th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farrahi, B. On isometries of finite Euclidean Planes. Abh.Math.Semin.Univ.Hambg. 44, 3–11 (1975). https://doi.org/10.1007/BF02992941

Download citation

Keywords

  • Quadratic Form
  • Galois Group
  • Euclidean Plane
  • Bijective Mapping
  • Galois Field