Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On a geometric procedure for the construction of Sperner spaces

  • 18 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.


  1. [1]

    J. André, Über Parallelstrukturen I, II. Math. Z.76 (1961), 82–102; 155–163.

  2. [2]

    A. Barlotti, Un nuovo procedimento per la costruzione di spazi affini generalizzati di Sperner. Matematiche (Catania)21 (1966), 302–312.

  3. [3]

    A. Barlotti, J. Cofman, Finite Sperner Spaces Constructed from Projective and Affine Spaces. Abh. Math. Sem. Univ. Hamburg40 (1974), 231–241.

  4. [4]

    R. C. Bose, On a Representation of Hughes Planes. Proc. Conf. on Projective Planes (M. J. Kallaher andT. G. Ostrom eds.) Washington State Univ. Press (1973), 27–57.

  5. [5]

    P. Dembowski, Finite Geometries, Springer Verlag, Berlin-Heidelberg-New York, 1968.

  6. [6]

    D. Hilbert, Grundlagen der Geometrie. Zweite Auflage, Teubner, Leipzig 1903.

  7. [7]

    G. Nicoletti, Su una nuova classe di spazi affini generalizzati di Sperner. To appear.

  8. [8]

    W. Seier, Isomorphismen verallgemeinerter Parallelstrukturen. J. Geometry3 (1973), 165–178.

  9. [9]

    E. Sperner, Verallgemeinerte affine Räume und ihre algebraische Darstellung. Algebraical and Topological Foundations of Geometry. Proc. of a Colloq., Utrecht, August 1959. Oxford, London, New York, Paris (1962), 167–171.

  10. [10]

    E. Sperner, Affine Räume mit schwacher Inzidenz und zugehörige algebraische Strukturen. J. Reine Angew. Math.204 (1960), 205–215.

Download references

Author information

Correspondence to A. Barlotti.

Additional information

Dedicated to ProfessorSperner on the occasion of his 70th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barlotti, A., Nicolletti, G. On a geometric procedure for the construction of Sperner spaces. Abh.Math.Semin.Univ.Hambg. 45, 251 (1976).

Download citation


  • Affine Space
  • Affine Plane
  • Point Incident
  • Fixed Plane
  • Desarguesian Plane