Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol

  • 44 Accesses

  • 9 Citations


Photooxidation of carbonyl sulfide (COS) under UV irradiation and the role of the oxides such as SiO2, Al2O3 and Fe2O3 were investigated byin situ FTIR in a long optical path cell. The major products were identified as SO2and CO2 by means of IR spectra and GC-MS. SO2 was partially oxidized into SO2 2™ on the surface of the oxides and interior wall of the reactor, which was determined by XPS. The photooxidation is pseudo first order with respect to COS, and the apparent rate constant is approximately 9.30 x 10−4·s−1 and AI2O3 promote the photooxidation of COS significantly, but Fe2O3 has no obvious influence on the reaction. The reaction rates in the presence of the oxides or not, rank as: UV + SiO2⊳ UV +AI2O3⊳ UV, UV + Fe2O3. The potentiality of the oxides for promoting the photooxidation of COS implicates that the aerosol particles may contribute to the photooxidation of COS in the atmosphere.

This is a preview of subscription content, log in to check access.


  1. 1.

    Donald, C. T., Bandy, A. R., Byron, W. B., Impact of anthropogenic sources and sinks on carbonyl sulfide in the North Pacific troposphere, J. Geophys. Res., 1996, 101: 1873–1881.

  2. 2.

    Erik, K., A three-dimensional global model study of carbonyl sulfide in the troposphere and the lower stratosphere, J. Atmos. Chem., 1998, 29: 151–177.

  3. 3.

    Jennifer, A. L., Michael, B. M., Steven, C. W. et al., Oxidation of CS2 and COS: sources for atmospheric SO2, Nature, 1979, 281: 185–188.

  4. 4.

    Becker, K. H., Nelsen, W., Yu, H. S. et al., A new mechanism for the reaction CS2+OH, Chem. Phys. Lett., 1990, 168(6): 559–563.

  5. 5.

    Cox, R. A., Reactions of OH radicals with gaseous sulphur compounds, Nature, 1980, 284: 330–331.

  6. 6.

    Chen, X. R., Wu, F., Weiner, B. R., Internal energy distributions of The SO(X3Σ-) product from the O(3P) + OCS reaction, Chem. Phys. Lett., 1995, 247: 313–320.

  7. 7.

    Koike, M., Suzuki, I. H., Nakae, S., Simulation studies on gas-to-particle conversion processes in the stratosphere using ultra-violet SR (synchrotron radiation), Hoshasen, 1990, 16(2): 67–69.

  8. 8.

    aeger, K., Weller, R., Schrems, O., FTIR studies of photochemical reaction of carbonyl sulfide with ozone, Proc. SPIE-Int. Soc. Opt.Eng., 1992, 333–334.

  9. 9.

    Zhao, X. P., Turco, R. P., Photodissociation parameterization for stratospheric modeling, J. Geophys. Res., 1997, 102(D8): 9447–9459.

  10. 10.

    Hofmann, D. J., Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years, Science, 1990, 248: 996–1000.

  11. 11.

    Turco, R. P., Whitten, R. C., Toon, O. B. et al., OCS, stratospheric aerosol and climate, Nature, 1980, 283: 283–286.

  12. 12.

    Crutzen, P. J., The possible importance of CSO for the sulfur layer of the stratosphere, Geophys. Res. Lett., 1976, 3: 73–76.

  13. 13.

    Mian, C., Davis, D. D., A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 1995, 100: 8993–9005.

  14. 14.

    Thomason, L. W., Kent, G. S., Trepte, C. R. et al., A comparison of the stratospheric aerosol background periods of 1979 and 1989-1991, J. Geophys. Res., 1997, 102: 3611–3616.

  15. 15.

    Molina, L. T., Lamb, J. J., Molina, M. J., Temperature dependent UV absorption crosssections for carbonyl sulfide, Geophys. Res. Lett., 1981, 8:1008–1011.

  16. 16.

    DeMore, W. B., Sander, S. P., Golden, D. M. et al., Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication, Evaluation number 12, 1997, 974.

  17. 17.

    Chin, M., Davis, D. D., Global sources and sinks of OCS and CS2 and their distribution, Global Biogeochemical Cycles, 1993, 7: 321–337.

  18. 18.

    Strauss, C. E., McBane, G. C., Houston, P. L., The 157 nm photodissociation of OCS, J. Chem. Phys., 1989, 90(10): 5364–5372.

  19. 19.

    Nan, G., Burk, I., Houston, P. L., Photodissociation of OCS at 222 nm The triplet channel, Chem. Phys. Lett., 1993, 209(4): 383–389.

  20. 20.

    Sivakumar, N., Hall, G. E., Houston, P. L., State-resolved photodissociation of OCS monomers and clusters, J. Chem. Phys., 1988, 88(6): 3692–3708.

  21. 21.

    Katayanagi, H., Yuxiang, Mo., Suzuki, T., 223 nm photodissociation of OCS. Two components in S(1D2) and S(3P2) channels, Chem. Phys. Lett., 1995, 247: 571–576.

  22. 22.

    Daniel, J. J., Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 2000, 34: 2131–2159.

  23. 23.

    Wang, L., Song, G. X., Zhang, F. et al., Kinetic studies on catalytic oxidation of CS2 over atmospheric particles, Chemical Journal of Chinese Universities (in Chinese), 2002, 23(9): 1738–1742.

  24. 24.

    Wang, L., Zhang, F., Chen, J. M., Studies on catalytic oxidation of CS2 over atmospheric particles and oxide catalysts, Science in China, Series B, 2001, 44(6): 587–595.

  25. 25.

    Wang, L., Zhang, F., Chen, J. M., Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles, Environmental Science and Technology, 2001, 35(12): 2543–2547.

  26. 26.

    Arias, A. M., Garcia, M. F., Juez, A. I. et al., Study of the lean NOx reduction with C3H6 in the presence of water over silver/alumna catalysts prepared from inverse microemulsions, Applied Catalysis B: Environmental, 2000, 28: 29–41.

  27. 27.

    Mochida, M., Pitts, B. J., FTIR studies of the reaction of gaseous NO with HNO3 on porous glass: Implications for conversion of HNO3 to photochemically active NOx in the atmosphere, J. Phys. Chem. A, 2000, 104: 9705–9711.

  28. 28.

    Cooper, P. L., Abbatt, J. P. D., Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter, J. Phys. Chem., 1996, 100: 2249–2254.

Download references

Author information

Correspondence to Hongbo Wu or Xiao Wang or Jianmin Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, H., Wang, X. & Chen, J. Photooxidation of carbonyl sulfide in the presence of the typical oxides in atmospheric aerosol. Sc. China Ser. B-Chem. 48, 31–37 (2005). https://doi.org/10.1007/BF02990910

Download citation


  • carbonyl sulfide
  • photooxidation
  • atmospheric aerosol
  • oxides
  • in situ FTIR